SHMS Tracking Efficiency & Track Parameter Optimization

Ali Usman

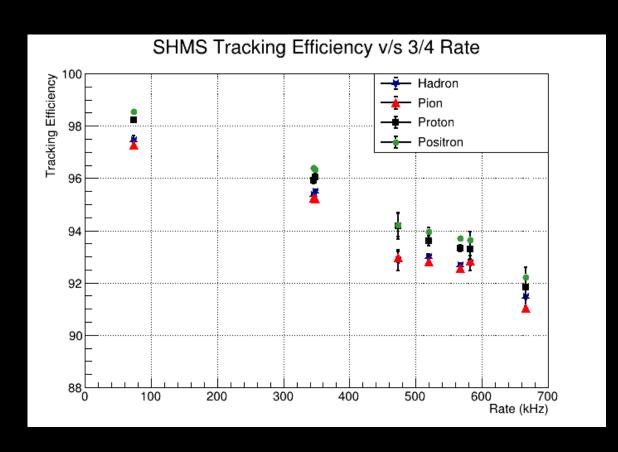
Recall

➤ Was looking at efficiency v/s rate for different type of particles in both SHMS and HMS.

➤ Was looking at a bunch of spring runs with fixed kinematics and varying current.

> Some outlier were observed in efficiency plots which correspond to crapy runs with very low statistics.

➤ It was suggested to look at efficiency v/s first hodoscope plane rate (S1X).

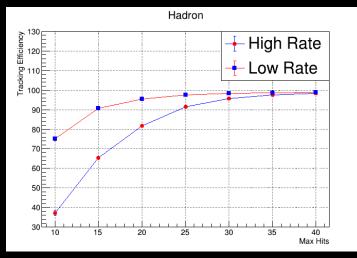

Kinematic Settings


Fun # 8038, 8040, 8042, 8043, 8056, 8057, 8066, 8085

> E = 8.2 GeV

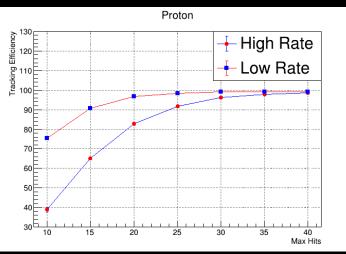
Spec.	P	Angle
HMS	-1.82 GeV	25.89
SHMS	+6.05 GeV	6.91

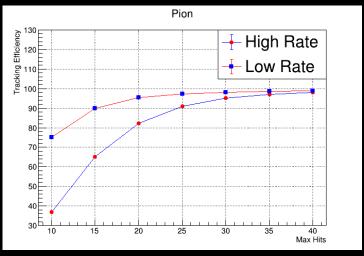
Tracking Efficiency



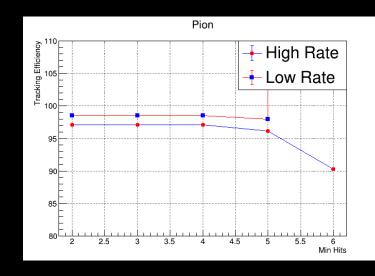
Track Selection Parameter

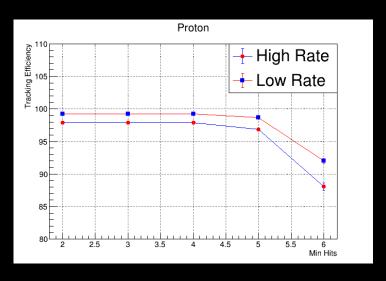
Parameter	Default value	
Pmax_pr_hits	25, 25	
Pmin_hit	4, 4	
Pmin_combo	3, 3	
Pspace_point_criterion	1.2, 1.2	
Pntracks_max_fp	10	
Pntracks_max_fp	10	
Pxt_track_criterion	100	
Pxy_track_criterion	20	
Pxpt_track_criterion	1	
Pypt_track_criterion	1	

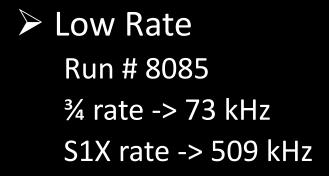

Max_Hits

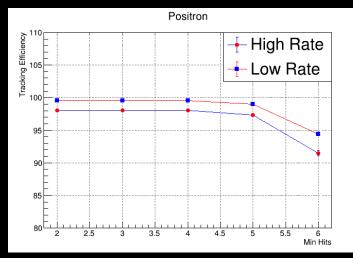

High Rate
 Run # 8038
 ¾ rate -> 667 kHz
 S1X rate -> 2541 kHz

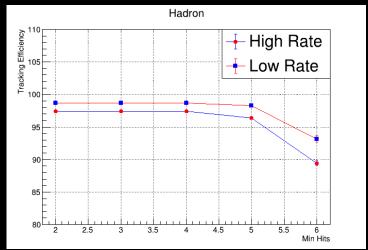
Low Rate
Run # 8085
¾ rate -> 73 kHz
S1X rate -> 509 kHz






Min_Hits


- For this step


 Max_Hits = 35, 35
- ➤ High Rate
 Run # 8038
 ¾ rate -> 667 kHz
 S1X rate -> 2541 kHz

Min_Combo

For this step

Max_Hits = 35, 35

 $Min_Hits = 4, 4$

ligh	Rate
IIKII	nate

Run # 8038

3/4 rate -> 667 kHz

S1X rate -> 2541 kHz

> Low Rate

Run # 8085

3/4 rate -> 73 kHz

S1X rate -> 509 kHz

Value	Positron	Hadron	Pion	Proton
2.2	98.05±0.19	97.45±0.18	97.12±0.10	97.88±0.23
2, 2	99.51±0.09	98.69±0.22	98.53±0.06	99.22±0.11
	00 05 10 10	07.45.0.10	07.1210.10	07.00+0.22
3, 3	98.05±0.19	97.45±0.18	97.12±0.10	97.88±0.23
,	99.51±0.09	98.69±0.22	98.53±0.06	99.22±0.11
1 1	98.05±0.19	97.45±0.18	97.12±0.10	97.88±0.23
4, 4	99.51±0.09	98.69±0.22	98.53±0.06	99.22±0.11

Summary & Outlook

- > The overall trend of efficiency with two different rates is similar.
- > Will include slope in the efficiency v/s rate plots in future.

- Track selection parameters are giving interesting results v/s efficiency.
- > Will finish the remaining track selection parameters.

➤ Will try and calculate the yield in order to make sure efficiencies are reasonable.

Backup

Introduction

Tracking Efficiency is calculated in the coin report files.

- Using new cut and template files for the replays.
- > Calculating efficiencies for both HMS and SHMS simultenously.

Tracking Efficiency =
$$\frac{(s)hmsscindid}{(s)hmsscinshould}$$

> Trying to check the stability of calculation with default track parameters.

Tracking Cuts

- > (s)hmsscinshould = hod + PID
 - ➤ hod = goodscinhit + goodstarttime + betanotrack
- > (s)hmsscindid = (s)hmsscinshould + dc.ntrack > 0
- > PID cuts

Det	SHMS			HMS	
	Positron	Pion	Proton	Electron	Hadron
HGC	> 1.5	> 1.5	<= 1.5	> 0.5	< 0.5
Cal	> 0.6 & < 1.6	<= 0.6 & > 0	<= 0.6 & > 0	> 0.6 & < 2.0	< 0.6 & > 0
Aero	> 1.5	> 1.5	<= 1.5		