Cosmic and Sr-90

- Cosmic run using scintillator trigger (external with latency set)
- Sr-90 run using internal trigger, send 1-ms period test pulse trigger to VMM
- Cluster size: 2 5, to cut away a few hot channels in VMM chip

Detector Gain from Fe55 source

- Fe55 X-ray Source
- 5.9 keV main peak, 2.9 keV Argon escape peak
- GEM HV 3900 V
- Gas ratio Argon:CO2 = 80:20
- W: 25 eV (Argon), 34 eV (CO2)
- Primary Ionization (main peak): 5.9 keV / (0.8 * 25 + 0.2*34) ~ 220

Fe55 spectrum

- VMM gain = 3 mV/fC
- 1 fC = 6421.5 electrons
- Main peak ADC = 866
- Conversion factor (10 bit ADC, resolution 1 mV): 1.024
- The main peak is around 845.7 mV, ~ 281.9 fC
- Main peak = 1810227.5 electrons
- Detector gain: 8228.3
- Results could be improved after VMM chip calibration

VMM Fe55 Spectrum

Fe55

VMM calibration

- 1. DAC calibration (including pulser DAC and global threshold DAC)
- Baseline and Noise measurement
- 3. Channel threshold trimming
- 4. Signal amplitude gain and pedestal
- 5. Timing calibration

DAC calibration

- DAC (pulser and global threshold) can be routed to the VMM MO output
- MO output can be digitized by the xADC (in an external FPGA)
- xADC is 12-bit, reference voltage 1 V

- Methods: try a series of different DAC values, measure it using xADC, get the slope and intercept of the mV – DAC relationship
- The slope and the intercept can be used to convert the DAC value to voltage

Channel baseline and noise

- Measured by the xADC
- Goal: measure the ambient level for each channel when no signal is applied
- Methods: measure each channels' output using xADC
- Get the average and sigma from the measurement
- Average = baseline, sigma = noise
- Both on and off the detector need it
- When setting the threshold: threshold = baseline + 3 * sigma

Channel threshold trimming

- Threshold has channel-to-channel variation
- To make all channels have the same response to input signals, need to equalize the threshold
- On top of the global threshold, each channels has its own 5-bit trimming-DAC
- Channel's threshold can be fine-adjusted using this 5-bit DAC, in 32 steps, each step ~ 1 mV
- Methods: using xADC measure the threshold for each channel (measure all 32 steps)
- When done, for all channels, choose one common value that closest to the global threshold
- Then each channel's corresponding step (5-bit ADC value) constructs the table needed to equalize the threshold
- This table is independent of global threshold, one can then adjust the global threshold to affect all channels coherently

Signal amplitude gain and pedestal

- AKA PDO calibration
- For a given signal, channel response is different (fluctuate around the global gain setting)
- Two calibration methods: 1) using DAC pulser; 2) using neighbor logic
- DAC pulser method:
 - First finish the DAC calibration
 - Measure PDO with a series of different DAC pulser
 - Get the slope and y-intercept between PDO DAC for each channel
 - Slope is the channel gain, y-intercept is the channel pedestal
 - Y-intercept must be subtracted when doing the physics analysis

Neighbor logic method

- Enable neighbor logic means when a strip was fired, its neighboring strips will also be recorded, no matter neighboring strips are fired or not
- We can directly measure the pedestal of each channel, by giving its neighbor strip a test pulse
- Only pedestal, cannot do gain measurement

Timing measurement calibration

- Timing-at-peak, timing-at-threshold
 - Timing-at-peak, TAC starts to ramp when PDO detects signal peak
 - Timing-at-threshold, TAC starts to ramp when signal crosses threshold
- Configurable TAC ramp time (60ns, 100ns, 350ns...)
- Normal mode, fix-window mode
 - Normal mode: TAC halts at the next BC clock falling edge
 - Fix-window mode: BC clock is paused for a fixed time/latency, after that BC clock is re-initiated, and TAC also halts at the first new BC clock falling edge
- The fixed-latency mode calibration
 - allows a fine timing measurement calibration, by changing the fixed latency, and then measure the TDO readout per channel
 - A TDO Latency (time) plot gives the slope and y-intercept
 - The slope and y-intercept are used to extract time from TDO
- Normal mode calibration
 - By skewing the test pulse and the BC clock
 - The bigger the time difference between TP and BC, the shorter the TAC integration duration
 - Similar procedure to extract the slope and y-intercept
- Timing-at-threshold is often affected by timewalk issue, needs correction