Hall C L/T Seperation Analysis

Nov 28, 2018

Wenliang Li, Dept. of Physics, William and Mary, Williamsburg, VA 23185, USA.

Rosenbluth (L/T) Separation

- Rosenbluth Separation requires
 - Separate measurements at different ε (virtual photon polarization)
 - All Lorentz invariant physics quantities: Q², W, t, u, remain constant
 - Beam energy, scattered e angle and virtual photon angle will change as the result, thus event rates are dramatically different

Wenliang Li, Dept. of Physics, Univ. of Regina, Regina, SK S4S0A2, Canada.

Iterative Procedure (Recipe) to A Full LT Separation

Overall flowchart

- 1. Efficiency (Run by run) [root, c++]
- 2. Yield extraction (experiment and simulation) [root, c++]
- 3. Combining plots (Root, python)
- Background subtraction (subtracting sigma from Lambda events) [root, c++]
- 5. Summing the angle settings [root, c++]
- 6. Averaging the kinematics [Fortran]
- 7. Yield ratio [root, c++]
- 8. Generating SIM cross section [Fortran]
- 9. L/T seperation fitting [root, c++]
- 10. Suggested improved fitting/parameters [root, c++]

Kaon LT Kinematics Table

Q^2	x_B	ϵ	LH ₂ hours	Dummy hours	Overhead	Total
(GeV^2)					(hours)	(hours)
0.40	0.072	0.411	94.1	6.4	4	104.5
0.40	0.072	0.692	62.1	4.3	4	70.4
Subtotal charge radius			156.2	10.7	8.0	$174.9 \ (7.3 \text{ days})$
1.25	0.122	0.477	13.6	1.0	4	18.6
1.25	0.122	0.696	10.6	0.7	4	15.3
2.00	0.182	0.396	44.2	3.0	4	51.2
2.00	0.182	0.584	24.7	1.7	4	30.4
2.00	0.182	0.751	24.5	1.7	4	30.2
3.00	0.250	0.393	77.2	5.4	4	86.6
3.00	0.250	0.689	54.0	3.8	4	61.8
Subtotal reaction mech.			248.8	17.3	28.0	$294.1 \ (12.3 \ days)$
1.70	0.249	0.587	20.4	1.4	4	25.8
1.70	0.249	0.858	11.9	1.0	4	16.9
3.50	0.250	0.357	46.4	0.4	4	50.8
3.50	0.250	0.555	38.8	0.3	4	43.1
Subtotal $x_B = 0.25$			117.5	3.1	16.0	$136.6 \ (5.7 \ \rm{days})$
3.00	0.401	0.634	9.9	0.7	4	14.6
3.00	0.401	0.887	6.0	0.4	4	10.4
4.40	0.400	0.480	30.2	2.1	4	36.3
4.40	0.400	0.734	21.4	1.5	4	27.0
5.50	0.400	0.366	79.3	5.5	4	88.8
5.50	0.400	0.560	68.7	4.8	4	77.5
Subtotal $x_B = 0.40$			215.5	15.0	24.0	$254.5 \ (10.6 \ days)$

Coding Coding Philosophy

Wenliang Li, Dept. of Physics, William and Mary, Williamsburg, VA 23185, USA.

Yield Analysis Code

Wenliang Li, Dept. of Physics, William and Mary, Williamsburg, VA 23185, USA.

Where the code is:

https://github.com/billlee77/omega_analysis

- Thesis (Chap 4):
 - https://arxiv.org/pdf/1712.03214.pdf