Lambda(Λ) missing mass w/ SIDIS data

Samip Basnet U. Regina 26 April, 2018

Kinematics Setting Used

- $Q^2 = 3.10 \text{ GeV}^2$
- W = 2.78 GeV
- $I_{beam} = 40 \ \mu A$

HMS Setting (-ve polarity)

- $P_{HMS} = 5.27 \text{ GeV/c}$
- $\Theta_{\rm HMS} = 13.5^{\circ}$

SHMS Setting (+ve polarity)

- $P_{\text{SHMS}} = 5.05 \text{ GeV/c}$
- $\Theta_{\text{SHMS}} = 12.0^{\circ}$

Kinematic Group 1

Kinematics: x=0.31, Q2=3.10 GeV2

HMS settings: p=-5.27 GeV, theta = 13.5

SHMS polarity: positive

#	HMS P	HMS Theta	SHMS P 1	SHMS [heta	x	Q2	z	pt	W'2	nom muA	RHMS Khz	s RSHMS kHz	6 evnts K/hr r	accio eal	l/trg6 Hz D	one?	
1	-5.27	13.5	5.05	12.0	0.31	3.10	0.90	-0.06	1.16	40.0	11.3	28.5	24.6	0.06	16.6	yes	
2 3 4 5 6 7 8 9 1	-5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 0 -5.27 0 -5.27	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	5.05 3.37 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53	12.0 14.0 12.0 14.0 10.0 12.0 14.0 16.0 18.0 20.0	0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	0.90 0.60 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	0.12 -0.04 0.08 -0.21 -0.12 -0.03 0.06 0.15 0.23 0.32	1.14 3.35 3.34 4.35 4.41 4.44 4.44 4.40 4.32 4.21	40.0 40.0 13.5 22.8 39.6 40.0 40.0 40.0 40.0	11.3 11.3 11.3 3.8 6.4 11.2 11.3 11.3 11.3 11.3	10.6 178.1 81.1 476.2 472.9 470.3 265.6 145.5 78.1 41.0	23.8 99.4 97.8 23.5 46.2 89.5 88.3 80.8 66.3 58.9	0.02 0.16 0.07 0.63 0.54 0.28 0.17 0.11 0.07	9.3 140.0 78.0 108.9 186.6 327.1 197.5 117.3 69.2 43.0	yes yes yes yes yes yes, yes yes yes yes	taken twice
11	2 5 2/ 3 5 27 4 5 27	13.5 13.5 13.5	2.53 2.53 2.53	22.0 24.0 26.0	0.31 0.31 0.31	3.10 3.10 3.10	0.45 0.45 0.45	0.50 0.58	4.07 3.89 3.68	40.0 40.0 40.0	11.3 11.3 11.3	10.6 5.2	21.3 16.2	0.05	23.7 12.7 7.8	yes yes yes	

Kinematic Group 2

Kinematics: x=0.31, Q2=3.10 GeV2

HMS settings: p=-5.27 GeV, theta = 13.5

SHMS polarity: negative

# 1 2 3 4 5 6 7 8 9 10 11 2 13	HMS P -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27	HMS Theta 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	SHHS P -5.05 -3.37 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53	SHMS Theta 12.0 14.0 12.0 14.0 14.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0	x 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	02 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	z 0.90 0.60 0.45 0.45 0.45 0.45 0.45 0.45 0.45	p_t -0.06 -0.12 -0.08 -0.21 -0.12 -0.03 0.06 0.15 0.23 0.32 0.32	W'2 1.16 1.14 3.35 4.35 4.44 4.44 4.44 4.44 4.40 4.32 4.21 3.89	nom 40.0 40.0 13.5 22.8 40.0 40.0 40.0 40.0 40.0 40.0	RHMS 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	RSHMS kHz 28.5 10.6 178.1 81.1 476.2 472.9 472.9 265.6 145.5 78.1 41.0 21.1	evnts K/hr 24.6 23.8 99.4 97.8 23.5 46.2 89.5 88.3 80.8 66.3 58.9 366.5 21.3	accid/ real 0.06 0.02 0.16 0.07 0.63 0.54 0.28 0.17 0.11 0.07 0.01	trg6 Hz 16.6 9.3 140.0 78.0 108.9 186.6 327.1 197.5 117.3 69.2 43.0 23.7	Jon yes yes yes yes yes yes yes yes
12 13 14	-5.27 -5.27 -5.27	13.5 13.5 13.5	2.53 2.53 2.53	22.0 24.0 26.0	0.31 0.31 0.31	3.10 3.10 3.10	0.45 0.45 0.45	0.41 0.50 0.58	4.07 3.89 3.68	40.0 40.0 40.0	11.3 11.3 11.3	21.1 10.6 5.2	36.5 21.3 16.2	0.05 0.05 0.03	23.7 12.7 7.8	1

From Hall C wiki SIDIS runplan (Runs 3420 onwards)

Plots in this work are from Run #3423

W vs Q² Diamond Plot

Cuts applied:

- Loose HMS and SHMS acceptance cuts
- Variable names : gtr.dp for delta; gtr.th for xptar; gtr.ph for yptar

- \rightarrow $E_{miss} = E_e + E_{e'} E_K$
- \rightarrow $\mathbf{p}_{\text{miss}} = \mathbf{q} \mathbf{p}_{\text{K}}$

$$\longrightarrow M_x = \sqrt{(E_{miss}^2 - |\mathbf{p}_{miss}|^2)}$$

PID cuts:

- Electron in HMS : calorimeter cut
- Kaon in SHMS : HGC and aerogel cherenkovs
- Z-position of the target to crudely remove the aluminum cell wall contribution

HMS calorimeter energy normalized to the central momentum

4

Further Work

- Coincidence time cut to clean up the pion events
- Comparison with the SIMC data
- Analyze other settings from the SIDIS data
- Continue w/ kinematics optimization