eK⁺ coincidence time and missing mass w/ SIDIS data

Samip Basnet U. Regina 10 May , 2018

eK Coincidence Time Calculation

- For $p(e,e'K^+)\Lambda$ reaction, coincidence time is the relative time between electron and K^+ scattering off the target; ideally peaks at zero
- Trigger time is only recorded **after** the moment when electron and K⁺ scatters off the target
- Time taken for particles to arrive from the target to the hodo-plane needs be subtracted from the trigger time, using following corrections:
 - Time taken if they arrive to the focal plane (fp) following the central path
 - Time taken if they did not follow the central path
 - Fluctuation in fp time w.r.t central time
 - Signal propagation time and other effects (i.e. offset)
- Formalism similar to the one Latif used for h(e,ep) coincidence time; most up-to-date version of hcana/replay should consist of ee⁺, ep, eπ⁺, and eK⁺ coincidence times (Ctime.eKCoinTime_ROC1 for eK⁺)

SHMS cointime correction:

$$\Delta t^{P} = \frac{L_{central}^{P}}{v_{K}} + \frac{\Delta L^{P}}{v_{K}} + (t_{hod}^{P} - t_{fp}^{P})$$

HMS cointime correction:

$$\Delta t^{H} = \frac{L_{central}^{H}}{v_{e}} + \frac{\Delta L^{H}}{v_{e}} + \left(t_{hod}^{H} - t_{fp}^{H}\right)$$

Corrected Coincidence Time:

$$t_{corr}^{coin} = (t_{trig-1} - \Delta t^{P}) - (t_{trig-4} - \Delta t^{H}) + \delta_{offset}$$

More information on the implementation can be found in : > hcana/src/THcCoinTime.*

Kinematics Setting Used

- $Q^2 = 3.10 \text{ GeV}^2$
- W = 2.78 GeV
- $I_{\text{beam}} = 40 \ \mu\text{A}$

HMS Setting (-ve polarity)

- $P_{HMS} = 5.27 \text{ GeV/c}$
- $\Theta_{_{\rm HMS}} = 13.5^{\circ}$

SHMS Setting (+ve polarity)

- $P_{\text{SHMS}} = 5.05 \text{ GeV/c}$
- $\Theta_{\text{SHMS}} = 12.0^{\circ} (14.0^{\circ})$

Kinematic Group 1

Kinematics: x=0.31, Q2=3.10 GeV2

HMS settings: p=-5.27 GeV, theta = 13.5

SHMS polarity: positive

	HMS	HMS	SHMS	SHMS		oo -		+	w o	nom	RHMS	S RSHMS	evnts	accio	l/ trg6	2	
1	-5.27	13.5	5.05	12.0	0.31	3.10 0.	90 - 0	.06	1.16	40.0	11.3	28.5	24.6	0.06	16.6	yes	
2	-5.27	13.5	5.05	14.0	0.31	3.10 0.	90 O	.12	1.14	40.0	11.3	10.6	23.8	0.02	9.3	yes	
3	-5.27	13.5	3.37	12.0	0.31	3.10 0.	50 -0	. 04	3.35	40.0	11.3	178.1	99.4	0.16	140.0	yes	
4	-5.27	13.5	3.37	14.0	0.31	3.10 0.	50 0	.08	3.34	40.0	11.3	81.1	97.8	0.07	78.0	yes	
5	-5.27	13.5	2.53	8.0	0.31	3.10 0.	45 -0	. 21	4.35	13.5	3.8	476.2	23.5	0.63	108.9	yes	
6	-5.27	13.5	2.53	10.0	0.31	3.10 0.	45 -0	.12	4.41	22.8	6.4	472.9	46.2	0.54	186.6	yes	
7	-5.27	13.5	2.53	12.0	0.31	3.10 0.	45 -0	.03	4.44	39.6	11.2	470.3	89.5	0.49	327.1	yes,	taken twice
8	-5.27	13.5	2.53	14.0	0.31	3.10 0.	45 0	.06	4.44	40.0	11.3	265.6	88.3	0.28	197.5	yes	
9	-5.27	13.5	2.53	16.0	0.31	3.10 0.	15 0	.15	4.40	40.0	11.3	145.5	80.8	0.17	117.3	yes	
10	-5.27	13.5	2.53	18.0	0.31	3.10 0.	15 0	. 23	4.32	40.0	11.3	78.1	66.3	0.11	69.2	yes	
11	-5.27	13.5	2.53	20.0	0.31	3.10 0.	15 0	. 32	4.21	40.0	11.3	41.0	58.9	0.07	43.0	yes	
12	-5.27	13.5	2.53	22.0	0.31	3.10 0.	15 0	. 41	4.07	40.0	11.3	21.1	36.5	0.05	23.7	yes	
13	-5.27	13.5	2.53	24.0	0.31	3.10 0.	15 0	.50	3.89	40.0	11.3	10.6	21.3	0.05	12.7	yes	
14	-5.27	13.5	2.53	26.0	0.31	3.10 0.	45 0	.58	3.68	40.0	11.3	5.2	16.2	0.03	7.8	yes	

Kinematic Group 2

Kinematics: x=0.31, Q2=3.10 GeV2

HMS settings: p=-5.27 GeV, theta = 13.5

SHMS polarity: negative

#12345678910	HMS P -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27	HMS Theta 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	SHHS P -5.05 -5.05 -3.37 -2.53 -2.53 -2.53 -2.53 -2.53 -2.53	SHMS Theta 12.0 14.0 12.0 14.0 8.0 10.0 12.0 14.0 16.0 18.0	x 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	02 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	z 0.90 0.60 0.45 0.45 0.45 0.45 0.45 0.45	p_t -0.06 0.12 -0.04 0.08 -0.21 -0.12 -0.03 0.06 0.15 0.23	W'2 1.16 1.14 3.35 3.34 4.35 4.41 4.44 4.44 4.40 4.32	nom 40.0 40.0 40.0 13.5 22.8 39.6 40.0 40.0 40.0	RHMS H1.3 11.3 11.3 11.3 6.4 11.2 11.3 11.3 11.3 11.3	RSHMS kHz 28.5 10.6 178.1 476.2 472.9 470.3 265.6 145.5 78.1	evnts K/hr 24.6 23.8 99.4 97.8 23.5 46.2 89.5 88.3 80.8 66.3	accid/ real 0.06 0.02 0.16 0.07 0.63 0.54 0.28 0.28 0.17 0.11	trg6 Hz 9.3 140.0 78.0 108.9 186.6 327.1 197.5 117.3 69.2	Done yes yes yes yes yes yes yes yes yes
9 10 11	-5.27 -5.27 -5.27	13.5 13.5 13.5	•2.53 •2.53	16.0 18.0 20.0	0.31	3.10	0.45	0.15 0.23 0.32	4.40 4.32 4.21	40.0 40.0 40.0	11.3	145.5 78.1 41 0	80.8 66.3 58 9	0.17 0.11	117.3 69.2 43.0	yes yes
12 13 14	-5.27 -5.27 -5.27	13.5 13.5 13.5 13.5	2.53 2.53 2.53 2.53	22.0 24.0 26.0	0.31 0.31 0.31	3.10 3.10 3.10	0.45 0.45 0.45	0.50 0.50 0.58	4.07 3.89 3.68	40.0 40.0 40.0	11.3 11.3 11.3	21.1 10.6 5.2	36.5 21.3 16.2	0.05 0.05 0.03	23.7 12.7 7.8	yes yes yes

From Hall C wiki SIDIS runplan (Runs 3420 onwards)

Plots in this work are from Run #3423 and #3424

Run #3423

- Note that the beam bunches are 4ns apart (NOT 2ns like for the Fpi-2)
- Only real coincidences were taken into account

Missing Mass (M_x)

What changed?

- Data replayed with kaon mass (instead of pion mass) in the SHMS
- Spectrometer acceptance cuts added (some issues with SHMS delta cuts)
- Tighter PID cuts than before:
 - Nomalized HMS calorimeter energy > **0.9**
 - HGC total npe < 1.5
 - Aerogel total npe > **4.0**
- SHMS beta vs coincidence cuts applied
- Edges of the aluminum cell-wall (+/- 0.5 cm) removed

HMS calorimeter energy normalized to the central momentum

- Λ missing mass (M_x) agrees with the SIMC
- Distribution for $M_{y} > 1.2$ improved significantly after beta-cointime cut
- BUT the neutron peak due to epi events still persists

- With the SHMS $\delta < 0,$ the neutron peak becomes smaller
- Distribution at higher $M_{_x}$ improved quite significantly for negative SHMS δ but the neutron peak became more pronounced
- Is this because of the SIDIS physics?

Further Work

- p(e,e'π⁺)n SIMC simulation completed; however the missing mass distribution from SIMC needs to be re-calculated with the kaon mass for a better comparison with replayed data
- β-cointime cut does not take into account any accidental coincidences (although a huge improvement is not expected)
- Runs #3423 and #3424 seems to be at the kinematics end point (?) so look at more SIDIS runs