Updated Kinematics and Uncertainty Projection for F_k kinematics

Samip Basnet U. Regina 29 March, 2018

 $Q^2 = 2.00 \text{ GeV}^2$

	T _{inc} (GeV)	Q² (GeV²)	W (GeV)	x	T _e . (GeV)	θ _{e⁺} (deg)	P _K (GeV/c)	θ _q (deg)	angle settings	-t _{nomial} (GeV ²)
FROM RUNPL	.AN:									
high ε low ε δε = 0.17	10.921 8.761	2.00 2.00	3.14 3.14	0.18 0.18	5.07 2.91	10.90 16.10	5.56 5.56	9.17 7.71	+3,0,-3 +3,0,-2.2	0.138 0.138
OPTIMIZED:										
high ε low ε δε = 0.20	10.618 8.518	2.00 2.00	3.20 3.20	0.17 0.17	4.56 2.46	11.66 17.75	5.77 5.77	8.53 6.94	+3,0,-3 +3,0,-1.4	0.131 0.131

 $\boxed{\mathbf{Q}^2 = 3.00 \text{ GeV}^2}$

	T _{inc} (GeV)	Q² (GeV²)	W (GeV)	x	T _e . (GeV)	θ _e . (deg)	P _K (GeV/c)	θ _q (deg)	angle settings	-t _{nomial} (GeV ²)
FROM RUNPLAN:										
high ε	10.921	3.00	3.14	0.25	4.54	14.13	6.05	9.64	+3,0,-3	0.219
low ε	8.191	3.00	3.14	0.25	1.81	26.01	6.05	6.88	+3,0	0.219
δε = 0.30										
OPTIMIZED:										
high ε	10.618	3.00	3.14	0.25	4.23	14.84	6.05	9.44	+3,0,-3	0.219
low ε	8.518	3.00	3.14	0.25	2.13	23.43	6.05	7.37	+3,0,-1.8	0.219
δε = 0.23										

- Spectrometer Acceptance Cuts
- Diamond Cut
- 3 unequal -t bins (with roughly equal statistics)
 e.g. in the plot below, bin #1 => 0.00 0.20;
 bin #2 => 0.20 0.30; bin #3 => 0.30 0.70

Uncertainties in $\boldsymbol{\sigma}_{\mathrm{L}}$ and $\boldsymbol{\sigma}_{\mathrm{T}}$

high
$$\boldsymbol{\varepsilon} \rightarrow \sigma_1 = \sigma_{\mathrm{T}} + \epsilon_1 \, \sigma_{\mathrm{L}} = \sigma_{\mathrm{T}} \left(1 + \frac{\epsilon_1}{R} \right)$$

where,
$$R=rac{\sigma_{\mathrm{T}}}{\sigma_{\mathrm{L}}}$$

low
$$\epsilon \rightarrow \sigma_2 = \sigma_{\rm T} + \epsilon_2 \, \sigma_{\rm L} = \sigma_{\rm T} \, (1 + \frac{\epsilon_2}{R})$$

Separated cross sections

$$\sigma_{\rm L} = \frac{\sigma_1 - \sigma_2}{(\epsilon_1 - \epsilon_2)}$$
$$\sigma_{\rm T} = \frac{\sigma_2 \epsilon_1 - \sigma_1 \epsilon_2}{(\epsilon_1 - \epsilon_2)}$$

$$\frac{\delta\sigma_{\rm T}}{\sigma_{\rm T}}(\%) = \frac{1}{(\epsilon_1 - \epsilon_2)} \sqrt{\epsilon_1^2 \left(\frac{\delta\sigma_1}{\sigma_1}\right)^2 \left(1 + \frac{\epsilon_2}{R}\right)^2 + \epsilon_2^2 \left(\frac{\delta\sigma_2}{\sigma_2}\right)^2 \left(1 + \frac{\epsilon_1}{R}\right)^2},$$

$$\frac{\delta\sigma_{\rm L}}{\sigma_{\rm L}}(\%) = \frac{1}{(\epsilon_1 - \epsilon_2)} \sqrt{\left(\frac{\delta\sigma_1}{\sigma_1}\right)^2 (R + \epsilon_1)^2 + \left(\frac{\delta\sigma_2}{\sigma_2}\right)^2 (R + \epsilon_2)^2}$$

 $Q^2 = 2.00 \text{ GeV}^2$

 $Q^2 = 3.00 \text{ GeV}^2$

 $Q^2=3.00$, W=3.14, $\epsilon_{low}=0.39$, $\epsilon_{low}=0.69$

Further Work

- Update factorization kinematics @ x = 0.40 (Q^2 = 3.00, 4.40, and 5.50 GeV²)
- Finalize the h(e,ep) kinematics