

2022 Fall Meeting of the APS Division of Nuclear Physics

October 27-30, 2022, New Orleans, LA

Hard exclusive π⁻Δ⁺⁺ production off the proton with CLAS12 at JLAB

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Motivation

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$

Factorisation expected for:-t / Q² << 1 and Q² > M_{Δ}^2 x_B fixed

- → Provides access to p- Δ transition GPDs
- → 3D structure of the ∆ resonance and of the excitation process

Twist 2: 8 helicity non-flip trans. GPDs

→ Connection to proton-proton GPDs via symmetry considerations

<u>Twist 3</u>: 8 helicity flip trans. GPDs \rightarrow Theory in progress (no publ. so far)

 \rightarrow π^{\pm} is expected to be especially sensitive to the tensor charge of the resonance

Hard Exclusive π⁻ Electroproduction and BSA

<u>Cross section</u> (longitudinally pol. beam and unpol. target):

$$2\pi \frac{d^2\sigma}{dtd\phi} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \epsilon \cdot \cos(2\phi) \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cdot \cos(\phi) \frac{d\sigma_{LT}}{dt} + h \cdot \sqrt{2\epsilon(1-\epsilon)} \cdot \sin(\phi) \frac{d\sigma_{LT'}}{dt}$$

Beam Spin Asymmetry:

$$BSA(t,\phi,x_B,Q^2) = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{\sqrt{2\epsilon(1-\epsilon)}\frac{\sigma_{LT'}}{\sigma_0}\sin\phi}{1 + \sqrt{2\epsilon(1+\epsilon)}\frac{\sigma_{LT}}{\sigma_0}\cos\phi + \epsilon\frac{\sigma_{TT}}{\sigma_0}\cos2\phi}$$

CLAS12 Experimental Setup in Hall B at JLAB

→ Data recorded with CLAS12 during fall 2018 and spring 2019
→ 10.6 / 10.2 GeV e⁻ beam → ~87 % average polarization → liquid H₂ target
→ Analysed data ~ 35 % of the approved RG-A beam time

Event Selection and Kinematic Cuts

$$ep \rightarrow e\Delta^{++}\pi^- \rightarrow ep\pi^- X$$

$$X = \pi^+$$

 \rightarrow 2 σ cut around the missing π^+

0.2

0.1

0.3

0.4

Kinematic cuts:
$$Q^2 > 1.5 \text{ GeV}^2$$
 $W > 2 \text{ GeV}$ $y < 0.75$ $-t < 1.5 \text{ GeV}^2$ (only the forward region)

 x_B

0.6

0.5

Event Selection and Background Rejection

Stefan Diehl, JLU + UCONN

APS-DNP Fall Meeting 2022, New Orleans

Monte Carlo Simulations

2 MC samples have been used:

a) Semi-inclusive DIS MC

- → Does not contain the π - Δ ++ production in "forward" kinematics
- \rightarrow Contains nonres. background as well as ρ production and other potential BG channels
- → Used to estimate background shape and contaminations

b) Exclusive $\pi^-\Delta^{++}$ MC

- \rightarrow Phase space simulation with a weigth added to match experimental data
- $\rightarrow \Delta$ peak with PDG mass and FWHM
- → Both MCs are processed through the full simulation and reconstruction chain

Stefan Diehl, JLU + UCONN

APS-DNP Fall Meeting 2022, New Orleans

Event Selection and Background Estimate

Event Selection and Background Estimate

Stefan Diehl, JLU + UCONN

Resulting Beam Spin Asymmtries (Q²-x_B integrated)

10/28/2022

9

Q² - X_B Integrated Result

Different sources of systematic uncertainty have been studied: beam polarisation, background subtraction, fiducial volume, extraction method, acceptance, bin migration, radiative effects

Multidimensional Results

Stefan Diehl, JLU + UCONN

APS-DNP Fall Meeting 2022, New Orleans

Conclusion and Outlook

- Hard exclusive π - Δ ++ production can be well measured with CLAS12
- The obtained BSA is clearly negative and ~ 2 times larger than for the hard exclusive π^+ production
- The extracted BSA is a potential first "clean" observable sensitive to $p-\Delta$ transition GPDs
- Theory predictions based on twist-3 transition GPDs are in progress

