Hall A Analyzer Introduction

Ole Hansen

Jefferson Lab

Hall A & C Analysis Workshop June 25, 2018

Ole Hansen (Jefferson Lab)

Hall A Analyzer Introduction

Analysis Workshop 2018 1 / 18

Prerequisites for doing analysis — Experimental Physics

- General nuclear physics, relativistic kinematics, detector principles
- Specific physics of your experiment
- Configuration of your experiment
 - Detector arrangement, geometry, DAQ/trigger
 - Run plan, run list, list of known issues
 - Resources: Experts, logbooks
- Good grasp of analysis techniques
 - Statistics, fitting, correlations
 - Cuts, conditions, run & event selection
 - Corrections for experimental effects
 - Particle identification techniques
 - Resources: (Textbooks), experts, analysis meetings, workshops like this

Prerequisites for doing analysis — Software Tools

- Working knowledge of C++
 - Object-oriented programming (classes, polymorphism)
 - C++11 knowledge not essential at this time
 - Resources: Online tutorials, textbooks
- Familiarity with ROOT (although Python will often do too)
 - Resources: ROOT documentation (lots)
 https://root.cern.ch/root-user-guides-and-manuals
 - Good starting point: ROOT Primer
- Understanding of Hall A analyzer (and/or Hall C's hcana)
 - Basic concepts
 - Meaning of output variables
 - Resources: Documentation, workshops like this, experts, source code

Typical Hall A & C Analysis Flow

- **Replay:** Raw data \rightarrow flat N-tuples in ROOT tree; histograms
- Analysis: ROOT files(s) \rightarrow numerical results; plots
- Often necessary to run several replay and/or analysis passes

Analyzer as a ROOT Extension

- Hall A analyzer = Library of reconstruction & analysis classes on top of ROOT
- All of ROOT available at command line and programmatically

Plug-In Architecture

Analyzer Library: General Classes

Infrastructure

- Event loop (THaAnalyzer)
- Database reader (THaAnalysisObject::LoadDB)
- Raw data input interface (THaEvData)
- ROOT output file writer (THaOutput)

• Basic Reconstruction

- Standard detectors (e.g. THaCherenkov)
- Spectrometer base class (THaSpectrometer)
- Particle track data (THaTrack)
- Incident beam (e.g. THaUnrasteredBeam)

Basic Analysis

- Kinematics calculations (e.g. THaElectronKine)
- Vertex reconstruction (e.g. THaReactionPoint)
- Energy loss calculation (e.g. THeTrackEloss)

Analyzer Library: JLab & Hall A-Specific Classes

JLab

- Raw data decoder (Decoder::CodaDecoder)
- Rastered beam (THaRasteredBeam)
- Beam helicity analysis (e.g. THaADCHelicity)

• Hall A

- VDC track reconstruction (THaVDC)
- ► HRS spectrometer (optics, target reconstruction) (THaHRS)
- Hall C has its own hall-specific library (see next talk)

Anatomy of a Detector Class

Class Categories

Detector

- Typically embedded in an Apparatus
- Detectors should not know about each other (data encapsulation)

• Apparatus / Spectrometer

- Collection of Detectors
- Combines data from detectors
- Spectrometer": Apparatus with support for tracks

Physics Module

- Combines data from several apparatuses
- Typical applications: kinematics calculations, vertex finding, coincidence time extraction
- ► Toolbox design: Modules can be chained, combined, used as needed
- Multiple instances of each type of object possible

"Global" Variables (Analysis Results)

• Names of Analysis Object Instances

- Each instance of an Analysis Object has a unique name
- Convention for detectors:

Object name = spectrometer name + "." + detector name

Example name: "R.cer": Right HRS ("R") gas Cherenkov ("cer")

Global Variables"

- Give access to analysis results (stored in class member variables)
- Can be a single value or fixed- or variable-size array
- Available "globally" (in a global list: gHaVars)
- Each variable has a unique name:

Variable name = Analysis Object Name + "." + Local Name

Example: "R.cer.asum_c" (Corrected ADC sum of "R.cer")

Database Files

Example Database File ~/Workshop2017/DB/20160205/db_R.cer.dat

```
---- [ 2016-02-05 00:00:00 -0500 ]
R.cer.detmap =
     1
          20
               32 41 1 1881
32 41 1 1877
     2
          11
R.cer.npmt = 10
R.cer.position = 0 0 1.99
R.cer.size = 1 \quad 0.4 \quad 1
R.cer.tdc.offsets = 0 0 0 0 0 0 0 0 0 0
R.cer.adc.pedestals = 439.3 383.5 352.2 492.7 557.1 553 563.1 489.4 227.2 465.6
R.cer.adc.gains = 1.06 0.92 1.08 1.05 0.99 0.99 1 1.01 1.01 0.97
---- [ 2016-09-10 00:00:00 -0400 ]
R.cer.position = -0.08 -0.008 1.8
R.cer.size = 1.22 0.302 1.37
R.cer.adc.pedestals = 439.8 384.3 352.8 493.1 557.1 553.2 564.1 490 227.3 465.9
R.cer.adc.gains = 0.926 0.919 1.139 1.002 0.95 0.997 0.989 1.014 1.05 0.983
```

- Flat text files of key/value pairs
- Values can be scalars, arrays, matrixes, strings
- Support for incremental validity periods and time zones
- Suitable for version control
- Currently must consult source code for list of recognized keys

Database Files

Example Database File ~/Workshop2017/DB/20160205/db_R.cer.dat

- Flat text files of key/value pairs
- Values can be scalars, arrays, matrixes, strings
- Support for incremental validity periods and time zones
- Suitable for version control
- Currently must consult source code for list of recognized keys

Dynamic Output Configuration

- Choose "global variables" to include in ROOT output tree
- No recompilation necessary

```
Example Output Definition File
# A single variable: Number of tracks found in the RHRS
variable R.tr.n
# A wildcard expression: all variables from the GoldenTrack module
block R.gold.*
# All RHRS track data (focal plane as well as at target)
# (usually too much information, narrow it down!)
block R.tr.*
```

- Much more possible
 - Arithmetic expressions
 - 1D and 2D histograms
 - Defining and appying cuts
 - Scalers
 - EPICS (slow control) variables

• Documentation: https://redmine.jlab.org/projects/podd/wiki/Output

Dynamic Output Configuration

- Choose "global variables" to include in ROOT output tree
- No recompilation necessary

```
Example Output Definition File
# A single variable: Number of tracks found in the RHRS
variable R.tr.n
# A wildcard expression: all variables from the GoldenTrack module
block R.gold.*
# All RHRS track data (focal plane as well as at target)
# (usually too much information, narrow it down!)
block R.tr.*
```

- Much more possible
 - Arithmetic expressions
 - 1D and 2D histograms
 - Defining and appying cuts
 - Scalers
 - EPICS (slow control) variables

• Documentation: https://redmine.jlab.org/projects/podd/wiki/Output

Unique capability, few other frameworks offer it!

Replay Example

See last year's workshop:

https://redmine.jlab.org/projects/podd/wiki/Workshop2017/

Re-doing 2017 Example Replay in 2018 Virtual Machine

```
[wrkshp@centos7 ~]$ cd
[wrkshp@centos7 ~]$ git clone https://github.com/JeffersonLab/HallAC-
Workshop2017.git Workshop2017
[wrkshp@centos7 ~]$ source Workshop2017/setup.sh
[wrkshp@centos7 ~] $ cd Workshop2017/replay
[wrkshp@centos7 replay]$ analyzer
analyzer [0] .x replay.C
Here are the data files:
g2p_3132.dat.0
Run number? 3132
Number of events to replay (-1=all)? -1
. . .
314292 events read
204327 events accepted
Physics_master GoodGoldenTrack
                                      313476
                                                 203511 (64.9%)
. . .
analyzer [1] b = new TBrowser
```

Analyzer Output Structure

Analyzing Output ROOT Files

- Trees and histograms can be read by plain ROOT
- Reading run metadata & event headers requires analyzer or hcana
- Options
 - ROOT's TBrowser and TTreeViewer
 - Command line T->Draw()
 - Scripted/compiled custom loop
- Often must combine many ROOT files

	① ole — ole@haplix1a:~ — analyzer — 97×24	
Ekenzle:- oleS an W E H A L L A Release Based on ROOT Fee http://b	010762 C O N T to 1% C O N T to 1% C A N A L Y Z C N 1.0.3 Jon 17 101 0.1200 From 3 2013 Inframatics visit Inframatics visit Inframatics visit	
alyrer [0] f = TF File ") 0x7fd8653 alyrer [1] T->Dra fo in <tcanvas::m alyrer [2]</tcanvas::m 	Le::Open("http://htllweb.jlb. com/podi/dowiloud/glp_5132_examp of L. Dowin(500, 2.33,2.30)); cf. L. Dowin(500, 2.33,2.30)); cf. L. Dowin(500, 2.33,2.30); cf. L. Dowin(500, 2.33,2.33,2.30); cf. L. Dowin(500, 2.33,2.33,2.30); cf. L. Dowin(500, 2.33,2.33,2.30); cf. L. Dowin(500, 2.33,2.33,2.33); cf. L. Dowin(500, 2.33	le.rost")

Analyzing Output ROOT Files

- Trees and histograms can be read by plain ROOT
- Reading run metadata & event headers requires analyzer or hcana
- Options
 - ROOT's TBrowser and TTreeViewer
 - Command line T->Draw()
 - Scripted/compiled custom loop
- Often must combine many ROOT files

See tomorrow afternoon's talk on reading trees

	1.06	- owertapittis	a analyza - analyza
kenzle:- ole\$ a	nalyzer		
			•
	LCONE to 1	ite .	•
HALL	A C++ ANAL	YZER	•
			•
Release	1.6.3	Jun 19 281	8 *
Based on 8000	6.12/86	Feb 9 281	8 •
			•
Fee	information visi	τ	•
http://	hallaweb.jlab.org	/podd/	•
			•
************		**********	***
Lyzer [0] f = 1	File::Open(Thttp:	//hallaveb.5	lab.org/podd/download/plp 3152 example.rost")
ite *) 0x7fd563	Secret		
Lyzer [1] T-20	2wf *L. try. n22h1/56	8.2.23.2.261	-1 I
e in clfanvas:	MakebefCarryac>:	created defai	uit TCanvas with name of
Lyzer [2]			

Status & Outlook

- Version 1.6.0 was *finally* released on 3/14/2018 (Pi Day :))
 - New database format
 - Decoder modules
 - Improved VDC track reconstruction
 - Improved formula & test package (removed limitations)
 - See Release Notes for full list
- Current stable version: 1.6.3 (17-Jun-2018)
- New home page and issue tracker (Redmine) https://redmine.jlab.org/projects/podd/wiki/
- Development version: 1.7-devel (ETA 1.7.0 end of 2018)
 - Many improvements planned, see feature list on Redmine
 - ★ Unified database interface
 - * 3-parameter VDC cluster fits (needed for APEX)
 - ★ More output options (non-double types, objects)
 - Work started

Resources

- Web site home page
 - Documentation
 - Release Notes
 - Source code downloads
 - Software Development Kit (included in distro)
 - Archived tutorials & example replays
- Issue & task tracker (Redmine) issues
- Mailing list: halla_software@jlab.org. Subscribe on mailman
- Analysis Workshop archive archive (includes older tutorials)