Hall A Optics Optimization

Tong Su 2018 Hall A&C Data Analysis Workshop June 25 2018

HRS Optics

- 4 Focal Plane Variable from tracking → 4 Target Variable
- 4 sets of up to 5th order polynomials to fit the expected target variables

$$\begin{cases} y_{tg} = \sum_{ljk} Y_{ijk} \theta_{fp}^{l} y_{fp}^{j} \phi_{fp}^{k} \\ \theta_{tg} = \sum_{ljk} T_{ijk} \theta_{fp}^{l} y_{fp}^{j} \phi_{fp}^{k} \\ \phi_{tg} = \sum_{ljk} P_{ijk} \theta_{fp}^{l} y_{fp}^{j} \phi_{fp}^{k} \\ \delta = \sum_{ljk} D_{ijk} \theta_{fp}^{l} y_{fp}^{j} \phi_{fp}^{k} \\ Y/D/T/P = \sum_{i=1}^{m} C_{i}^{Y/D/T/P} x_{fp}^{i} \end{cases}$$

L.vdc.matrixelem =			
t 0	0	0	-1.001135e+00 -3.313373e-01 -4.290819e-02 4.470852e-03
y 0	0	0	-8.060915e-03 1.071977e-03 9.019102e-04 -3.239615e-04
p 0	0	0	-2.861912e-03 -2.469069e-03 8.427172e-03 2.274635e-03
D 0	0	0	5.118113E-04 8.522775E-02 6.346834E-03 -4.637195E-03 1.476364E-02
D 1	0	0	-4.247550E-02 2.417700E-01 5.706905E-02 -4.025159E-03
D 2	0	0	-4.331429E+00 5.326924E+00 -7.478135E+00
D 3	0	0	3.167055E+01 9.678060E+01
D 4	0	0	-8.475406E+03
D 0	0	2	1.657123E-01 -8.826997E-01 3.245634E+00
D 0	2	0	8.754870E-01 5.443126E-01 4.792556E+00
D 0	1	1	-1.486998E-01 1.204271E+00 6.101041E-01
D 1	2	0	-6.488178E+01 2.017449E+00
D 1	0	2	6.270685E+00 -6.204080E+01
D 1	1	1	4.413440E+00 -6.221572E+01
D 2	0	2	-1.306661E+01
D 2	1	1	-2.466953E+03
D 2	2	0	-3.635787E+02
D 0	1	3	2.868957E+02
D 0	3	1	1.584274E+03
D 0	0	4	-4.392377E+01
D 0	4	0	-4.708602E+02
D 0	2	2	-1.706259E+03
T 0	1	1	1.783506E-02 1.150902E-02 3.780249E-01
11	1	1	-1.2/3105E+01 1.098221E+00
[0]	Ø	2	4.859896E-01 2.281832E-01 -2.116492E-01
T 1	0	2	-5.99/432E+00

HRS Optics Optimization – Data taking

- For θ_{tg} , y_{tg} , φ_{tg}
 - Sieve Slit + Mutifoils data which can cover the full acceptance of θ_{tg} , y_{tg} , φ_{tg}
 - Sieve Slit : 6×27
 - Mutifoils Target : 11 carbon foil with 2.5cm separation
- For δ
 - Known scattering momentum data
 - Scan the momentum peak at different position within the momentum acceptance

Elastic Scatterting Data(2016 Fall,GMP)

Sieve Slit and Muti-foils Target

Muti-Foils Sieve Data (2017 December , Tritium)

HRS Optics Optimization – Refitting the coefficient

Code to use

- First developed by Nilanga Liyanage et al. in Fortran and modified by several generations users
- Full C++ version
 - Cut_L,Cut_R : Apply the cut for vertex, foil and momentum peak
 - Author : Jin Huang
 - Modified by Yang Wang for Gmp to update the number of foils and sieve holes
 - **Tree2Ascii** : Extract the data from root tree with the applied cut and generate the .txt data file
 - Author: Ole Hansen, JLab, February 2004
 - Modified by Jin Huang to support additional cuts
 - **OpticsOpt Class** : Main code to optimize the matrix and to check the result
 - Author: Jin Huang
 - Modified by Yang Wang for the LH target energy loss

Sieve Optimization

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #6

Vertex Optimization

δ Optimization (GMP Data)

