Summary of L/T/LT/TT-separation iterative procedure

> Garth Huber Aug 26, 2022

Pre-requisite: Stable and finalized data!

- Before starting the L/T/LT/TT-separation procedure, it is essential that you have:
 - Final normalized yields (counts/mC) for all settings, with all efficiencies, livetimes, cryotarget, FADC-DT and other yield corrections tested for reliability over a wide rate range and applied
 - All kinematic offsets determined and finalized
- This is because it is essential that the one thing that is kept constant in the iterations is the experimental normalized yield and distributions.
- If any subsequent changes are made to any part of the experimental distributions, the iteration procedure must be repeated to ensure the result remains self-consistent.
- Failure to respect this restriction will result in significant wasted time!

Pre-requisite – Choose a functional form

- The cross section varies across experimental acceptance.
- It is needed to choose a functional form that will reasonably take into account this variation.
- Of course you don't know in advance what to choose, therein the uncertainty.
- All you can do is to make a choice, and start the iteration process with it.
- Then you need to do tests to see if the functional dependence reproduces the variation of the data.
- If the tests fail, then you need to modify the functional form and try again until you get something that works better.

Each t bin has a different average value of W, Q². This dependence must be taken into account

Example parameterization

Replace physics_pion.f with physics_iterate.f in SIMC

Iibra:/home/huberg/r2d2/simc/simc_fpi2	>
File Edit View Search Terminal Help	
* Models for sigL, sigT, sigLT, sigTT for Deuterium.	
<pre>*** * Parameterization revised for IT26, 12.11.09 q2_set=2.45 tav=(0.0735+0.028*log(q2_set))*q2_set ftav=(abs(t_gev)-tav)/tav ft=t_gev/(abs(t_gev)+0.139570**2)**2</pre>	 fitpar() parame determi
<pre>sigl=(fitpar(1)+fitpar(2)*log(Q2_g)) 1 *exp((fitpar(3)+fitpar(4)*log(Q2_g))*(abs(t_gev)-0.2)) sigt=fitpar(5)+fitpar(6)*log(Q2_g) 1 +(fitpar(7)+fitpar(8)*log(Q2_g))*ftav</pre>	L/T-itera • It is the
<pre>siglt=(fitpar(9)*exp(fitpar(10)*abs(t_gev)) 1 +fitpar(11)/abs(t_gev))*sin(thetacm) sigtt=(fitpar(12)*Q2_g*exp(-Q2_g))*ft*sin(thetacm)**2</pre>	to be de
tav=(-0.178+0.315*log(Q2_g))*Q2_g	not the • Howeve
<pre>sig219=(sigt+main%epsilon*sigl+main%epsilon*cos(2.*phicm)*sigtt > +sqrt(2.0*main%epsilon*(1.+main%epsilon))*cos(phicm)*siglt)/1.d0</pre>	essentia
c now convert to different W c W dependence given by 1/(W^2-M^2)^2 c factor 15.333 is value of (w**2-ami**2)**2 at W=2.19	initial pa
<pre>c wfactor=15.333/(s-(targ.Mtar_pion/1000.)**2)**2 * wfactor=8.539/(s-(targ.Mtar_pion/1000.)**2)**2</pre>	tor your
<pre>c wfactor=1.D0/(s-(targ.Mtar_pion/1000.)**2)**2 wfactor=1.D0/(s_gev-mtar_gev**2)**2 sig=sig219*wfactor sigl=sigl*wfactor sigt=sigt*wfactor sigt=sigt*wfactor sigtt=sigtt*wfactor siglt=sigtt*wfactor</pre>	

- **fitpar()** is an array of free parameters that will be determined as part of the L/T-iteration process.
- It is the functional dependence that needs to be determined first, not the parameters.
- However, it is also essential that you make some good guesses of initial parameter values for your first iteration.

It is crucial to keep organized

- Each Q²,W should be done separately.
- It is too much to expect the procedure to work globally, we only need to properly take into account the kinematic variation across a single diamond at a time.
- Keep each iteration in a different directory, e.g. Q2_xx/IT_yy
- Keep ALL output. Don't throw anything away!
- Example fitpar() for Q²=2.45 LD+ iteration #11

libra> cd it1	1/			
libra> ls				
par.pl_245				
libra> cat pa	r.pl 245			
0.82135E+03	0.12595E+03	1	4.1	
-0.41000E+03	0.00000E+00	2	4.1	
-0.24615E+02	0.12942E+01	3	4.1	
0.11100E+02	0.00000E+00	4	4.1	
0.35925E+02	0.18332E+01	5	0.4	
-0.18000E+02	0.00000E+00	6	0.4	
0.27316E+02	0.62567E+01	7	0.4	
-0.31000E+02	0.00000E+00	8	0.4	
0.00000E+00	0.00000E+00	9	47.4	
-0.20000E+02	0.00000E+00	10	47.4	
-0.12451E+03	0.98541E+01	11	1.2	
0.00000E+00	0.00000E+00	12	1.2	
libra>				
	<pre>libra> cd it1 libra> ls par.pl_245 libra> cat pa 0.82135E+03 -0.24615E+02 0.11100E+02 0.35925E+02 -0.18000E+02 0.27316E+02 -0.31000E+02 -0.20000E+00 -0.20000E+00 libra></pre>	<pre>libra> cd it11/ libra> ls par.pl_245 libra> cat par.pl_245 0.82135E+03 0.12595E+03 -0.41000E+03 0.00000E+00 -0.24615E+02 0.12942E+01 0.11100E+02 0.00000E+00 0.35925E+02 0.18332E+01 -0.18000E+02 0.00000E+00 0.27316E+02 0.62567E+01 -0.31000E+02 0.00000E+00 0.00000E+00 0.00000E+00 -0.12451E+03 0.98541E+01 0.00000E+00 0.00000E+00 libra></pre>	<pre>libra> cd it11/ libra> ls par.pl_245 libra> cat par.pl_245 0.82135E+03 0.12595E+03 1 -0.41000E+03 0.00000E+00 2 -0.24615E+02 0.12942E+01 3 0.11100E+02 0.00000E+00 4 0.35925E+02 0.18332E+01 5 -0.18000E+02 0.00000E+00 6 0.27316E+02 0.62567E+01 7 -0.31000E+02 0.00000E+00 8 0.00000E+00 0.00000E+00 9 -0.20000E+02 0.00000E+00 9 -0.20000E+02 0.00000E+00 10 -0.12451E+03 0.98541E+01 11 0.00000E+00 0.00000E+00 12 libra></pre>	<pre>libra> cd it11/ libra> ls par.pl_245 libra> cat par.pl_245 0.82135E+03 0.12595E+03 1 4.1 -0.41000E+03 0.00000E+00 2 4.1 -0.24615E+02 0.12942E+01 3 4.1 0.11100E+02 0.00000E+00 4 4.1 0.35925E+02 0.18332E+01 5 0.4 -0.18000E+02 0.00000E+00 6 0.4 0.27316E+02 0.62567E+01 7 0.4 -0.31000E+02 0.00000E+00 8 0.4 0.00000E+00 0.00000E+00 9 47.4 -0.20000E+02 0.00000E+00 9 47.4 -0.12451E+03 0.98541E+01 11 1.2 0.00000E+00 0.00000E+00 12 1.2</pre>

Step 1 – SIMC distributions

- Run SIMC for large number of events and generate distributions for spectrometer and physics variables using the functional form and fitpar() from previous page
- **Do this SETTING BY SETTING for given Q²,W** (example is iteration #11)

Step 2 – Combine SHMS settings

- Add together Left, Center, Right SHMS settings at high and low ε,
- Obtain Y_{exp} , δY_{exp} , Y_{sim} , δY_{sim} , $R = Y_{exp}/Y_{sim}$, δR for each (W,Q²,t, ϕ , ϵ) bin
- Data only have to be done once. MC has to be done every iteration.

- Need mean data values of W, Q², θ , ϵ for each t bin at high and low ϵ
- These values will differ slightly between high and low ε , and change
- My recollection is that we took average of high and low ε values

Canada.	∎ / f	Add togethei or each (W,0	r Left, (Q²,t,φ,ε	Cente :) bin ⁻	r, Rigl for bo	ht SHN th Dat	/IS setti a and N	ngs at l IC	high ar
)A2, (• (Calculate stat	istical e	errors	for ea	ch (W,	Q²,t,φ,ε) bin	
S4S(• (Obtain Υ _{exp} , δ	δΥ _{exp} , `	Υ _{sim} , δ	Y _{sim} , F	R= Y _{exp}	/Y _{sim} , δF	R for ea	ch (W,0
a, SK	• [Data only hav	e to be	done	once.	MC h	as to be	e done e	every ite
Regin									
jina, F	Ste	p 3 – Ca		late	ave	erag	e kin	ema	tics
niv. of Reg		Need mean for both data	data va a and N	alues /IC	of W, (Q², θ, ε	tor eac	ch t bin a	at high a
hysics, U	•	These value slightly as m	es will o nodel is	liffer s iterat	lightly ed	betwe	en high	and low	ε, and
t. of F		My recollect	ion is t	hat we	e took	averag	ge of hig	h and lo	wεval
Dr. Garth Huber, Dep			libra> ca 2.30345 2.26790 2.23517 2.20674 2.17764 2.15312 libra>	t avek.2 0.01952 0.02474 0.02790 0.02955 0.02889 0.02685	245.dat 2.14461 2.26473 2.36921 2.45983 2.54832 2.62646	0.06477 0.07924 0.08675 0.09053 0.08724 0.08146	6.13085 10.28234 13.26958 15.81400 17.95443 19.96777	5.79187 10.06806 13.09284 15.65749 17.80887 19.83086	1 2 3 4 5 6
7			W	δW	Q ²	δQ ²	θ_+	θ	#tbin

Step 4a – Inspect and understand

■ Deviations between Data and MC usually are indicated as wiggles in R. We desire R≈1 over broad kinematic range

Example shown is iteration #11

Step 4b – Inspect and understand

■ Deviations between Data and MC usually are indicated as wiggles in R. We desire R≈1 over broad kinematic range

- Errors in W, Q², t, φ dependence of SIMC model are indicated by too large/small value of R
- φ distributions for each tbin, subdivided into 8 θ* bins (since LT, TT depend also on θ*)
- Red lines are fits to make wiggles more clearly visible

^{2012/10/19 14.18}

Step 5 – Calculate unseparated d²σ/dtdφ

Using the fitpar() for the iteration, evaluate the model at average kinematics of the data for each t-bin

were fitted. For all five *t* bins at every (central) Q^2 setting, ϕ -dependent cross sections were determined at both high and low ϵ for chosen values of \overline{W} , \overline{Q}^2 (and corresponding values of θ_{π} and ϵ) according to

$$\sigma_{\exp}(\overline{W}, \overline{Q}^2, t, \phi; \overline{\theta}, \overline{\epsilon}) = \frac{\langle Y_{\exp} \rangle}{\langle Y_{\sin} \rangle} \sigma_{\mathrm{MC}}(\overline{W}, \overline{Q}^2, t, \phi; \overline{\theta}, \overline{\epsilon}).$$
(14)

The fitting procedure was iterated until σ_{exp} changed by less than a prescribed amount (typically 1%). A representative

Read over the text from Blok et al, PRC 78 (2008) 045202 very carefully!

Step 6 – Fit Rosenbluth Eqn

11

Step 7 – Fit L/T/LT/TT to get new fitpar()

Compare t-bins with each other

- Fit with physics_iterate.f functions to give next iteration model parameters
- Repeat steps 1-7 until separated cross sections are stable (change <1% from previous iteration)
- Do not rerun SIMC! Simply recalculate weight for each event.

libra> cd it1	2			ł
libra> ls	-			
par.pl 245				
libra> cat pa	r.pl 245			
0.88669E+03	0.13897E+03	1	3.0	
-0.41000E+03	0.00000E+00	2	3.0	
-0.25327E+02	0.12613E+01	3	3.0	
0.11100E+02	0.00000E+00	4	3.0	
0.31423E+02	0.17166E+01	5	0.6	
-0.18000E+02	0.00000E+00	6	0.6	
0.16685E+02	0.59226E+01	7	0.6	
-0.31000E+02	0.00000E+00	8	0.6	
0.20000E+02	0.00000E+00	9	34.9	
-0.34000E+01	0.00000E+00	10	34.9	
-0.14742E+03	0.90362E+01	11	1.3	
0.00000E+00	0.00000E+00	12	1.3	
libra>				

fitpar() used in iteration #12

Iteration procedure summary

Evaluating if Fit equations are okay

- Usually the procedure works okay, but for some kinematics in π⁻/π⁺ analysis the σ would not converge
- One thing we tried was to compare fitpar() from different Q²,W to see if they were slowly varying
- If not, we could use their variation as a suggestion of alternate functional form to try
- This is similar in concept to the feedback Vijay got last week on the offsets, i.e. things will behave in a consistent manner if the correct solution is found

More details are found in LD2 analysis technical report HallC-docDB-773

A few pointers

- Read over the Blok paper VERY CAREFULLY
- Also see tutorial slides Bill made for you at beginning of KaonLT run (Nov 28, 2018) and his comments in the code
- A single Q², W iteration should only take 1-2 hours
- I was able to do several iterations in a day, between teaching and other duties
- The fitpar() should converge in a few iterations to give 0.5<R<2</p>
- The main work is in getting R to be acceptably flat and in getting stable cross sections