SBS GEM Crosstalk Analysis

SBS Software/Analysis Meeting

John Boyd

Aug 5, 2022

Crosstalk Analysis Terms & Approach

- **Digital Crosstalk** on APV25 (multiplexer) channels (*channel-space vs strip-space*)
- Ratio of Neighboring Channels
 - "The Ratio" is calculated by dividing the ADCs of neighboring channels
 - The larger ADC is always divided by the smaller ADC
 - Calculation is skipped if either ADC is 0.
 - A threshold (ADC cut) can be applied to the numerator (larger ADC) to expose
 "dominant" ratios
 - Ratio is calculated using all channels on a single APV

- Histogram for **Ratio of All Neighboring Channels** on a <u>single APV</u> for a single run.
- The bump near the center of the plot is the crosstalk \rightarrow crosstalk ratio for APV25 is typically ~10

Ratio of ADCmax

Determining APV Ratio

Event viewer to inspect single events

- Shows hit/event in Strip Space (right) and Channel Space (left)
- Hits/events shown meet some basic criteria:
 - Includes only neighbor channel ratios greater than some threshold
 - Smaller channels (denominator) contributing to the ratio map "bundles" to strip space (min. bundle size = 2 strips)
- Marks numerator/denominator strips/channels with Up/Down Triangles, respectively
- Indicates if event contains "On Track" strip/channel (# and determined clusters (*

Findings From Viewer Events

- Crosstalk bundles are typically NOT "On Track" or "In Cluster"
- This is an empirical and should be tabulated
- Consider the case that a real hit/signal/cluster is part of a denominator bundle → We don't want to lose that signal

Proposed correction approach:

- For the APV we determine the Ratio (Correction Ratio) \rightarrow Here we have **12.1**
- We determine a Ratio Threshold \rightarrow 8.
- Event is flagged if it contains neighbor channel ratio greater than threshold.
- Smaller channel ADC is corrected:
 - Subtract "ADC correction" from Smaller Channel's ADC:

ADC correction = Larger Channel ADC

Correction Ratio

• **If:**

(Smaller Channel ADC) - (ADC correction) < 0

• Then:

Set Smaller Channel ADC to 0

• Else:

Smaller Channel ADC = (Smaller Channel ADC) - (ADC correction)

- Run: 13770
- Ratio Thresh = 8
- Corr. Ratio = 12.1

Handling Crosstalk Channels/Bundles

- We have for this run, **Correction Ratio = 12.1**
- Ratio Threshold = 8
- "Passing" events/channels \rightarrow (Ratio between neighbor channels > ratio threshold)
 - Channel 116: On Track & ADC = 1689.16
 Channel 115: ADC = 148.32 → Ratio = 11.389
 - Larger ADC divided by Ratio Threshold:
 - 1689.16/12.1 = **139.6**
 - Corrected ADC on Channel 148 = 148.32 139.6 = 8.72
 - ○Channel 116: On Track &
O Channel 117:ADC = 1689.16
ADC = 126.22→Ratio = 13.383
 - Corrected ADC on Channel 117 = 126.22 139.6 = -13.38
 - Less than zero so, set ADC to 0.

Summary for "Passing" ratio event/channels:

- Channel 115: ADC 148.32 \rightarrow 8.72
- Channel 117: ADC $126.22 \rightarrow 0$

- Run: 13770
- Ratio Thresh = 8
- Corr. Ratio = 12.1

Handling Crosstalk Channels/Bundles

- Run: 13770
- Ratio Thresh = 8
- Corr. Ratio = 12.1

- Run: 13770
- Ratio Thresh = 8
- Corr. Ratio = 12.1

- Run: 13770
- Ratio Thresh = 8
- Corr. Ratio = 12.1

- Run: 13770
- Ratio Thresh = 8
- Corr. Ratio = 12.1

