Fitting coefficients in a linear equation

Mark Jones

General type of problem

- Measured a set of N data points with values $A_{1} \ldots A_{N}$ with errors $\sigma_{1} \ldots \sigma_{N}$
- Have a model to characterize data: $B\left(p_{1} \ldots p_{k}\right)$ where p_{k} are coefficients that one wants to determine.
- Goodness of the fit determined by which set of $p_{1} \ldots p_{k}$ minimize chi-squared

$$
\chi^{2}=\frac{1}{N-1} \sum_{j=1}^{N}\left(\frac{A_{j}-B_{j}}{\sigma_{j}}\right)^{2}
$$

- Best solution has derivative of chi-squared with respect to each model parameter equal to zero

$$
\frac{\partial \chi^{2}}{\partial p_{1}}=0 \quad \frac{\partial \chi^{2}}{\partial p_{2}}=0 \quad \ldots \quad \frac{\partial \chi^{2}}{\partial p_{k}}=0
$$

Example Hall C optimization needs

- The spectrometer optics matrix

$$
Y_{t a r}=\sum_{k, l, m, n=1}^{\text {nord }} a_{k l m n} y_{f p}^{k} x_{f p}^{l} y p_{f p}^{m} x p_{f p}^{n}
$$

- Calorimeter gain constants

$$
E_{\text {cluster }}=a_{0} * \text { Eblock }_{0}+a_{1} * \text { Eblock }_{1}+\ldots+a_{\text {nmax }} * \text { Eblock }_{\text {nmax }}
$$

Example Hall C optimization needs

- The spectrometer obtics matrix

$$
Y_{t a r}=\sum_{k, l, m, n=1}^{\text {nord }} a_{k l m n} y_{f p}^{k} x_{f p}^{l} y p_{f p}^{m} x p_{f p}^{n}
$$

- Calorimeter gain constants

$$
E_{\text {cluster }}=a_{0} * \text { Eblock }_{0}+a_{1} * \text { Eblock }_{1}+\ldots+a_{\text {nmax }} * \text { Eblock }_{\text {nmax }}
$$

Need to be linear in the coefficients !

Need Minuit to fit : $\quad T(x)=a_{o}+x^{a_{1}}$

Example of polynomial fitting

- General polymonial

$$
F(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}
$$

$$
\begin{gathered}
\chi^{2}=\frac{1}{N-m-1} \sum_{j=1}^{N}\left(\frac{y_{j}-F\left(x_{j}\right)}{\sigma_{j}}\right)^{2} \\
\frac{\partial \chi^{2}}{\partial a_{0}}=0 \quad \frac{\partial \chi^{2}}{\partial a_{1}}=0 \ldots \frac{\partial \chi^{2}}{\partial a_{m}}=0
\end{gathered}
$$

Derivative of chi-squared with respect to a_{0}

- General polymonial $\quad F(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}$

$$
\frac{\partial \chi^{2}}{\partial a_{0}}=\frac{2}{N-m-1} \sum_{j=1}^{N}\left(\frac{y_{j}-F\left(x_{j}\right)}{\sigma_{j}^{2}}\right)\left(\frac{\partial F\left(x_{j}\right)}{\partial a_{0}}\right)=0 \quad \frac{\partial F\left(x_{j}\right)}{\partial a_{0}}=1
$$

$$
\sum_{j=1}^{N} \frac{y_{j}}{\sigma_{j}^{2}}=\sum_{j=1}^{N} \frac{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}}{\sigma_{j}^{2}}
$$

Rewrite as: $\quad \sum_{j=1}^{N} \frac{y_{j}}{\sigma_{j}^{2}}=a_{0} \sum_{j=1}^{N} \frac{1}{\sigma_{j}^{2}}+a_{1} \sum_{j=1}^{N} \frac{x}{\sigma_{j}^{2}}+\ldots+a_{m} \sum_{j=1}^{N} \frac{x^{m}}{\sigma_{j}^{2}}$

Derivative of chi-squared with respect to a_{M}

- General polymonial $\quad F(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}$

$$
\begin{aligned}
& \frac{\partial \chi^{2}}{\partial a_{m}}=\frac{2}{N-m-1} \sum_{j=1}^{N}\left(\frac{y_{j}-F\left(x_{j}\right)}{\sigma_{j}^{2}}\right)\left(\frac{\partial F\left(x_{j}\right)}{\partial a_{m}}\right) \quad \frac{\partial F\left(x_{j}\right)}{\partial a_{m}}=x^{m} \\
& \sum_{j=1}^{N} \frac{y_{j} x^{m}}{\sigma_{j}^{2}}=\sum_{j=1}^{N} \frac{x^{m}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}\right)}{\sigma_{j}^{2}} \\
& \text { Rewrite as: } \quad \sum_{j=1}^{N} \frac{y_{j} x^{m}}{\sigma_{j}^{2}}=a_{0} \sum_{j=1}^{N} \frac{x^{m}}{\sigma_{j}^{2}}+a_{1} \sum_{j=1}^{N} \frac{x^{(m+1)}}{\sigma_{j}^{2}}+\ldots+a_{m} \sum_{j=1}^{N} \frac{x^{(m+m)}}{\sigma_{j}^{2}}
\end{aligned}
$$

Set of linear equations

An equation for each $\quad \frac{\partial \chi^{2}}{\partial a_{m}}=0$

$$
\begin{aligned}
& \sum_{j=1}^{N} \frac{y_{j}}{\sigma_{j}^{2}}=a_{0} \sum_{j=1}^{N} \frac{1}{\sigma_{j}^{2}}+a_{1} \sum_{j=1}^{N} \frac{x}{\sigma_{j}^{2}}+\ldots+a_{m} \sum_{j=1}^{N} \frac{x^{m}}{\sigma_{j}^{2}} \\
& \sum_{j=1}^{N} \frac{y_{j} x^{m}}{\sigma_{j}^{2}}=a_{0} \sum_{j=1}^{N} \frac{x^{m}}{\sigma_{j}^{2}}+a_{1} \sum_{j=1}^{N} \frac{x^{(m+1)}}{\sigma_{j}^{2}}+\ldots+a_{m} \sum_{j=1}^{N} \frac{x^{(m+m)}}{\sigma_{j}^{2}}
\end{aligned}
$$

- Matrix $B=C A$ with solution $A=C^{-1} B$
- Need a robust way to invert matrix C.
- In general may not be able to invert C.

$C A=B \quad C=U S V^{\top} \quad$ therefore $\quad U S V^{\top} A=B$
$\Rightarrow \quad U^{\top} U S V^{\top} A=U^{\top} B \quad U^{\top} U=1$ therefore $S V^{\top} A=U^{\top} B$
$\Rightarrow \quad S^{-1} S^{\top} A=S^{-1} U^{\top} B \quad S^{-1} S=1$ therefore $V^{\top} A=S^{-1} U^{\top} B$
$V V^{\top} A=V S^{-1} U^{\top} B \quad V V^{\top}=1$ therefore $A=V S^{-1} U^{\top} B$
- ROOT provides class TDecompSVD with methods to calculate V, S and U from C and then solve for A

