
Analyzing-Trees-Section1

June 26, 2018

1 Analyzing Data in a ROOT Tree

1.1 Why Trees?

ROOT trees are optimized for the storage of the kind of data produced in high-energy and nuclear
physics experiments:

• Very large numbers of events with essentially the same data structure
• Variable length containers holding identical data/objects
• Tree-like structures of collections of objects, similar to databases

Access patterns to data in ROOT trees are also optimized for the kinds we typically need for
our analyses:

• "Column-wise" reading of individual data elements—only the element(s) of interest are read,
not entire events

• Only one event (or part of it) in memory at a time (modulo buffer size)
• Buffered to disk, some degree of integrity protection during writing ("cycles")

Without structures like ROOT trees, the efficient analysis of petabyte-size data sets from CERN
and elsewhere would be nearly impossible. ROOT trees

• minimize memory requirements and I/O
• greatly enhance access speed

In addition to simple n-tuple-like data, ROOT lets you write C++ objects to file. This is im-
possible in native C++ and is achieved through class dictionaries generated with the Cling C++
interpreter/compiler. The ability to write entire object trees is critical for storing the very com-
plex event data from HEP experiments. This is also knows as "C++ object persistency". Some
programming languages offer object persistency natively, but not C++.

1.2 Hall A Analyzer trees

ROOT trees produced by the Hall A and Hall C analyzers have a rather simple structure. Each
"global variable" (analysis result) selected for output to the tree is written to its own branch with
only a single leaf. The name of the branch is identical to the name of the global variable, for
example L.tr.p. At this time, data branches always have the type Double_t. We are planning to
support other data types, in particular integers, starting with analyzer version 1.7.

1

In the case of arrays, a second branch is written to the tree whose name is Ndata. followed by
the name of the corresponding array, e.g. Ndata.L.tr.p. These branches always have type Int_t

and hold the number of elements in the array for the current event. There is a lot of redundancy
in Ndata variables for various elements of a single object, such as the collection of tracks. We may
reduce or even eliminate this redundancy in a future version of the analyzer.

Here is an example of a typical Hall A analyzer output tree where all the Left-HRS track data
have been written out with a block L.tr.* statement in the output defintion file:

To explore this exact tree yourself, start an interactive analyzer or ROOT session and type:

analyzer [1] f = TFile::Open("/data/ROOTfiles/g2p_3132.root","READ");

analyzer [2] b = new TBrowser;

or, if you didn’t download the file yet,

analyzer [1] f = TFile::Open("http://hallaweb.jlab.org/data_reduc/AnaWork2018/ROOTfiles/g2p_3132.root");

analyzer [2] b = new TBrowser;

1.3 How to work with tree data

1.3.1 Inspecting text output

ROOT offers a number of ways to work with data in trees. First, there are two commands that pro-
duce text output. They are essentially legacy commands from the days of PAW, but nevertheless
they work well with the n-tuples in our trees:

Scan: Prints a table where each row corresponds to an event and and each column, to the
branch data. If there are multiple entries in a variable-sized array, multiple rows are printed
for a single event, each row corresponding to the array index, called "Instance". Allows quick
comparison of a number of columns (often faster and clearer than plotting).

Show: Prints all data for a single event. The output can be large. Helps with understanding
the data structure. Often used for inspecting unusual events such as misreconstructed tracks.

Let’s try these
TTree::Scan

In [1]: // Open ROOT file

f = TFile::Open("/data/ROOTfiles/g2p_3132.root","READ");

Warning in <TClass::Init>: no dictionary for class THaEvent is available

Warning in <TClass::Init>: no dictionary for class THaEventHeader is available

Warning in <TClass::Init>: no dictionary for class THaRun is available

Warning in <TClass::Init>: no dictionary for class THaCodaRun is available

Warning in <TClass::Init>: no dictionary for class THaRunBase is available

Warning in <TClass::Init>: no dictionary for class THaRunParameters is available

Ignore the warnings about "no dictionary for class ..." These occur because we are run-
ning plain ROOT and not the analyzer.

In [2]: // Look at the contents of the file

f->ls();

2

TreeView

3

TFile** /data/ROOTfiles/g2p_3132.root

TFile* /data/ROOTfiles/g2p_3132.root

KEY: THaRun Run_Data;2 g2p run 3132

KEY: TTree T;1 Hall A Analyzer Output DST

Note the tree named T

In [3]: // Print the value of the "L.tr.p" variable (momentum of reconstructed track in GeV)

// and "L.tr.vz" (vertex z-coordinate in m) for the first 10 events.

T->Scan("L.tr.p:L.tr.vz","","",10);

* Row * Instance * L.tr.p * L.tr.vz *

* 0 * 0 * 2.2508660 * 0.0016883 *

* 1 * 0 * 2.2000959 * 0.0075512 *

* 2 * 0 * 2.2489658 * 0.0085386 *

* 3 * 0 * 2.2487922 * 0.0482533 *

* 4 * 0 * 2.2428897 * 0.0239013 *

* 5 * 0 * 2.2513184 * 0.0304236 *

* 6 * 0 * 2.206881 * 0.0085658 *

* 7 * 0 * 2.2273119 * 0.0132412 *

* 8 * 0 * 2.1854466 * 0.0153844 *

* 9 * 0 * 2.2493795 * 0.0435411 *

Let’s scan again, this time selecting events with multiple tracks. Because these are rare (at the
level of a few percent), let’s scan the first 500 events.

In [4]: T->Scan("L.tr.p:L.tr.vz","L.tr.n>1","",500);

* Row * Instance * L.tr.p * L.tr.vz *

* 38 * 0 * 3.0418453 * 2.3118241 *

* 38 * 1 * 2.8860089 * 2.6425863 *

* 44 * 0 * 52.622658 * 0.2657139 *

* 44 * 1 * 2.5149214 * -1.542678 *

* 44 * 2 * 2.9936564 * -1.244326 *

* 44 * 3 * 2.5968255 * -0.199140 *

* 156 * 0 * 2.5946465 * 3.0075283 *

* 156 * 1 * 2.3305075 * -0.080241 *

* 174 * 0 * 2.8993665 * 1.4813918 *

* 174 * 1 * 2.0904357 * 1.4947630 *

* 218 * 0 * 4.3860716 * 3.1441395 *

* 218 * 1 * 7.6736062 * 1.8077999 *

* 470 * 0 * 3.7749093 * 1.9965279 *

4

* 470 * 1 * 22.422996 * 3.7932473 *

* 470 * 2 * 3.7986176 * 2.7120001 *

* 480 * 0 * 1.9938786 * 1.9214297 *

* 480 * 1 * 113.13986 * 10.898452 *

* 484 * 0 * 2.3361050 * 4.6470851 *

* 484 * 1 * 2.4774303 * 1.2389566 *

* 484 * 2 * 23.240640 * -1.556557 *

==> 20 selected entries

Modify the command above to scan the first 1000 events or more. Once the output fills a good
screenful, ROOT will prompt you if you wish to continue or quit. (The prompt is ignored in the
notebook environment.)

As you can see, there are now multiple instances per event (=row number). The L.tr.p and
L.tr.vz arrays are parallel, i.e. for both arrays the index has the same meaning. If you are unsure
if arrays are parallel, you can plot the corresponding Ndata elements against each other. To do so,
we can use T->Draw(), which we’ll discuss a little later.

TTree::Show
The second text-based command to inspect trees is TTree::Show(entry). It simply prints the

entire contents of the given entry (event). Let’s give it a try:

In [5]: T->Show(5);

======> EVENT:5

Ndata.L.tr.beta = 1

L.tr.beta = 1e+38

Ndata.L.tr.chi2 = 1

L.tr.chi2 = 0.00160361

Ndata.L.tr.d_ph = 1

L.tr.d_ph = 0.00480143

Ndata.L.tr.d_th = 1

L.tr.d_th = 1.04106

Ndata.L.tr.d_x = 1

L.tr.d_x = 0.198577

Ndata.L.tr.d_y = 1

L.tr.d_y = 0.00333265

Ndata.L.tr.dbeta = 1

L.tr.dbeta = 1e+38

Ndata.L.tr.dtime = 1

L.tr.dtime = 1e+38

Ndata.L.tr.flag = 1

L.tr.flag = 16384

Ndata.L.tr.ndof = 1

L.tr.ndof = 17

Ndata.L.tr.p = 1

L.tr.p = 2.25132

Ndata.L.tr.pathl = 1

5

L.tr.pathl = 25.7707

Ndata.L.tr.ph = 1

L.tr.ph = 0.00332678

Ndata.L.tr.px = 1

L.tr.px = 0.200856

Ndata.L.tr.py = 1

L.tr.py = -0.0314901

Ndata.L.tr.pz = 1

L.tr.pz = 2.24212

Ndata.L.tr.r_ph = 1

L.tr.r_ph = 0.00542946

Ndata.L.tr.r_th = 1

L.tr.r_th = -0.00309156

Ndata.L.tr.r_x = 1

L.tr.r_x = 0.137589

Ndata.L.tr.r_y = 1

L.tr.r_y = 0.0107624

Ndata.L.tr.tg_dp = 1

L.tr.tg_dp = 0.0104525

Ndata.L.tr.tg_ph = 1

L.tr.tg_ph = -0.00996509

Ndata.L.tr.tg_th = 1

L.tr.tg_th = 0.0139894

Ndata.L.tr.tg_y = 1

L.tr.tg_y = -0.00271471

Ndata.L.tr.th = 1

L.tr.th = 0.01955

Ndata.L.tr.time = 1

L.tr.time = 1e+38

Ndata.L.tr.vx = 1

L.tr.vx = 0

Ndata.L.tr.vy = 1

L.tr.vy = 0

Ndata.L.tr.vz = 1

L.tr.vz = 0.0304237

Ndata.L.tr.x = 1

L.tr.x = 0.137589

Ndata.L.tr.y = 1

L.tr.y = 0.00286525

L.cer.asum_c = 1140.82

L.ekine.Q2 = 0.0414565

L.ekine.W2 = 124.951

L.ekine.angle = 0.0904299

L.ekine.epsilon = 0.995922

L.ekine.nu = 0.00202145

L.ekine.omega = 0.00202145

L.ekine.ph_q = 2.98608

L.ekine.q3m = 0.203619

6

L.ekine.q_x = -0.200856

L.ekine.q_y = 0.0314901

L.ekine.q_z = 0.0112203

L.ekine.th_q = 1.51566

L.ekine.x_bj = 10.9319

L.gold.beta = 1e+38

L.gold.dp = 0.0104525

L.gold.index = 0

L.gold.ok = 1

L.gold.p = 2.25132

L.gold.ph = -0.00996509

L.gold.px = 0.200856

L.gold.py = -0.0314901

L.gold.pz = 2.24212

L.gold.th = 0.0139894

L.gold.x = 0

L.gold.y = -0.00271471

L.tr.n = 1

L.vx.z = 0.0304237

Event_Branch = (THaEvent*)0x7f31f4d58a50

fEvtHdr.fEvtTime = 1331594504000000

fEvtHdr.fEvtNum = 8

fEvtHdr.fEvtType = 3

fEvtHdr.fEvtLen = 447

fEvtHdr.fHelicity = 0

fEvtHdr.fTargetPol = 0

fEvtHdr.fRun = 3132

As you can guess, this is mostly useful for understanding odd outlier-type events. The output
can be very lengthy and is often best redirected to a file using .> filename at the ROOT command
prompt.

You may notice that a few values in this event are set to 1e+38. This is a special value, kBig,
that the analyzer uses to indicate that this value was never set. In the above analysis, no beta
calculation was done, so the corresponding data equal kBig. While this is convenient for distin-
guishing, say, a zero reading from the "never read" case, unfortunately this convention also makes
it difficult to plot any tree variables with at least a trivial cut like abs(L.tr.x)<10 because there
will always be some events that weren’t fully computed, e.g. because of missing track data etc.

1.3.2 Graphical & Programmatic Processing

Here is a summary of the common methods for graphical and programmatic analysis of trees.
Draw: Extremely useful command for plotting tree data. Produces 1-D and 2-D histograms as

well as 3-D graphs with various selection and drawing options.
MakeClass: Legacy function to create skeleton C++ code for a specific TTree. An event loop is

provided for you in the source file, which you need to fill in.
MakeSelector: Improved method to create skeleton C++ code. Provides a processing class

deriving from TSelector with various callback functions. ROOT does the looping over events for

7

you, and you have to specify what you would like to do for each event. Compared to MakeClass
code, it is better organized, faster, and suitable for multithreading. Available as of ROOT 6.

TDataFrame: Experimental processing framework featuring implicit multithreading and on-
demand execution. Relies heavily on C++11. Currently still quite buggy and slow. Available as
of ROOT 6.10 with a mainstream appearance in ROOT 6.14/00. Essentially a preview of what to
expect in ROOT 7.

In the following two sections, we will walk through examples of TTree::Draw and
TTree::MakeSelector. Click on "Next Section" below.

Next: Section 2, TTree::Draw >>

8

	Analyzing Data in a ROOT Tree
	Why Trees?
	Hall A Analyzer trees
	How to work with tree data
	Inspecting text output
	Graphical & Programmatic Processing

