KaonLTMeeting March 7th, 2024 Richard Trotta

Overview

- 1. Fix to xsect uncertainty
- 2. π -subtraction
- 3. π -subtraction xsect comparison
- 4. xsect issues

1) Fix to xsect uncertainty

- Last week I showed issue with uncertainties on iterations behaving as expected for ratios but shrinking for xsects
- Met with Ali and Garth, it was a simple fix
- I was using absolute error but treating as a relative error

Last week

*** Different Q2/W settings, just for error Fixed errors comparison

2) <u> π -subtraction</u>

- Implimented π-subtraction for Q²=2.115 and both Q²=3.0 settings
- Added proper scaling to all pion peaks

 Q^2 =3.0, W=3.14, high eps, center

3) <u> π -subtraction xsect comparison</u>

- Small drop in xsect as you get to lower -t
- Otherwise fairly consistent values with and without π-subtraction

**Iterations still work in progress

3) <u> π -subtraction xsect comparison</u>

- 1.10 < MM < 1.18
- MM cut sees a larger drop in xsect, but for higher
 -t this is only a few nb/GeV²

**Iterations still work in progress

4) xsect issues

**Iterations still work in

progress

- Q2=3.0, W=2.32: sigL is negative ($\epsilon_{Low} > \epsilon_{High}$)
- Q2=3.0, W=3.14: sigT is too small
- Q2=2.115, W=2.95: Somewhere in between

$$\sigma_L = g(W) \cdot (p1 + p2 \log Q^2) e^{(p3 + p4 \log Q^2) \cdot (-t + 0.2)}$$

Q²=3.0, W=2.32

4) xsect issues

- Comparing to Marco's thesis for similar kinematics..
 - For like epsilon's about an order of magnitude difference

Marco Carmignotto's thesis Fpi2: Q²=2.07, W=2.31