KaonLTMeeting March 7th, 2024
 Richard Trotta

Overview

1. Fix to xsect uncertainty

2. π-subtraction
3. π-subtraction xsect comparison
4. xsect issues

1) Fix to xsect uncertainty

- Last week I showed issue with uncertainties on iterations behaving as expected for ratios but shrinking for xsects
- Met with Ali and Garth, it was a simple fix
- I was using absolute error but treating as a relative error

Last week

2) π-subtraction

- Implimented π-subtraction for $Q^{2}=2.115$ and both $Q^{2}=3.0$ settings
- Added proper scaling to all pion peaks

$$
Q^{2}=3.0, W=3.14 \text {, high eps, center }
$$

3) π-subtraction xsect comparison

- Small drop in xsect as you get to lower -t
- Otherwise fairly consistent values with and without π-subtraction

$$
Q^{2}=3.0, W=3.14
$$

3) π-subtraction xsect comparison

- $\quad 1.10<\mathrm{MM}<1.18$
- MM cut sees a larger drop in xsect, but for higher $-t$ this is only a few $n b / \mathrm{GeV}^{2}$

$$
Q^{2}=3.0, W=3.14
$$

4) xsect issues

**|terations still work in progress

- $\mathrm{Q} 2=3.0, \mathrm{~W}=2.32$: sigL is negative $\left(\varepsilon_{\text {Low }}>\varepsilon_{\text {High }}\right)$
- $\mathrm{Q} 2=3.0, \mathrm{~W}=3.14$: sigT is too small
- Q2=2.115, W=2.95: Somewhere in between

$$
\sigma_{L}=g(W) \cdot\left(\mathrm{p} 1+\mathrm{p} 2 \log Q^{2}\right) e^{\left(\mathrm{p} 3+\mathrm{p} 4 \log Q^{2}\right) \cdot(-t+0.2)}
$$

$Q^{2}=3.0, W=2.32$

$$
\sigma_{T}=g(W) \cdot\left(\frac{\mathrm{p} 5}{1+\mathrm{p} 6 \cdot Q^{2}}\right)
$$

$$
Q^{2}=2.115, W=2.95
$$

4) xsect issues

- Comparing to Marco's thesis for similar kinematics..
- For like epsilon's about an order of magnitude difference

$$
\begin{aligned}
& \mathrm{Q}^{2}=3.0, \mathrm{~W}=2.32 \\
& \varepsilon_{\text {Low }}=0.57, \varepsilon_{\text {High }}=0.88
\end{aligned}
$$

Marco Carmignotto's thesis Fpi2:
$Q^{2}=2.07, W=2.31$

