KaonLT Analysis Update

(Pi-Delta BSA Analysis)

Ali Usman

Mar 21, 2024

University of Regina

Kinematics

- The correction to HMS delta is not needed for 3 out of 5 kinematics.
- Started the MM shape study for these three settings.

E (GeV)	Q² (GeV²)	W (GeV)	x _B
10.6	5.5	3.02	0.40
10.6	4.4	2.74	0.40
10.6	3.0	3.14	0.25
10.6	3.0	2.32	0.40
10.6	2.115	2.95	0.21

Missing Mass Shape Study

SIDIS v/s RHO

SIDIS v/s RHO

Q2 = 3.0, W = 3.14 (t-binning)

• At this setting, the statistics are enough to get two t-bins.

• Needed to decide where to put the bin boundary.

• Ideally, we could split the statistics in half but this is not possible due different *t* distribution.

Ideas for Systematic Error

- Challenging to accurately estimate systematic errors.
- Option 1
 - Calculate the Aysmmetry by using the Yield difference b/w data and MC.
- Option 2
 - Calculate the Asymmetry by fitting the Nuetron radiative tail instead of neutron peak.
- Other ideas??

Summary and Outlook

- Pi-Delta Missing Mass shape study is in-progress.
 - Only using SIDIS and Neutron as background processes (RHO gives a bad fit to data).
 - Rerunning SIMC (for more statistics) to reduce statistical fluctuations.
- Need ideas for systematic error estimations?
 - Can get two diffterent errors from the fit.
- Looked at the CLAS12 Pi-Delta BSA paper (Published June 2023).
 - Our kinematics abve some iverlap with them (Can do a comparison).
 - No theory available for this channel.