

Nuclear Physics Division
Fast Electronics Group

VTP Manual
Benjamin Raydo

Chris Cuevas

Bryan Moffitt

Dave Abbott

Oct 9, 2023

 2

1 Introduction

The VXS Trigger Processor (VTP) module is a VXS switch card module that participates in the Level 1

trigger in front-end VXS crates (a.k.a. the CTP switch slot) as well as the global-trigger VXS crate (a.k.a. the GTP

switch slot). The VTP design supersedes the CTP and GTP designs as it contains more backplane serial links to

front-end payload modules, more fiber optics serial links to other crates, and more FPGA resources for trigger logic.

Additionally it contains a dual-core 1GHz ARM processor core that runs a CODA ROC on a Linux O/S capable of

event building trigger diagnostic information from FPGA trigger logic. The processor utilizes 1Gbps Ethernet

connection for configuration, control, and filesystem. Additionally a 10Gbps and 40Gbps Ethernet can be used for

the CODA ROC readout in a future firmware/software development. This high speed readout can be used to read

from compatible Jlab VXS electronics as an alternative to VME which provides significantly more bandwidth for

future experiments that demand this.

2. Functional Description

Figure 2a: VTP Hardware Block Diagram

2.1 XC7V550T FPGA
The XC7V550T FPGA manages all the VXS backplane and optical serial streams. Custom trigger firmware

collects information from the front-end (VXS payload) modules using 4 full duplex SerDes lanes. Up to 4 QSFP

front panel ports can be used to communicate trigger information of other front-end crates and to the global trigger

crate. LVDS (32) outputs can be used to send fixed latency trigger signals to a TI master for local crate triggering or

TS (Trigger Supervisor) for global system triggering. A V1495 compatible mezzanine connector exists that allow

use of commercially available ECL/TTL/NIM/ADC/DAC expansion modules mainly to eliminate the need for

external level translators. Two DDR3 memories interfaces exists (each with 100Gbps bandwidth) that can be used

for large event data buffers in future event building applications, debug/trace buffers, trigger logic dictionaries,

histograms, etc. Dual 16bit AXI streaming busses providing a total of 40Gbps connect to the Zynq FPGA which can

be used to transport high speed event data to the 10/40Gbps Ethernet. For FPGA configuration and register access a

32bit data slave bus exists which connects to the Zynq FPGA who acts as the bus master.

Summary of Features for the XC7V550T

• 16x VXS payload interfaces: 4 full duplex lanes @ up to 8.5Gbps each

• 4x QSFP interfaces: 4 full duplex lanes @ up to 8.5Gbps each

• 2x DDR3 interfaces: 64bits each @ 1600MT/s

• Dual 16bit AXI streaming bus (up to 40Gbps) transmitter to XC7Z7030

 3

• TRIG1, TRIG2, SYNC from VXS

• 32bit LVDS output (>250Mbps per bit)

• 32bit V1495 daughtercard expansion (A395x)

• Virtex7 FPGA (364000LUT, 692800FF, 5MB BRAM, 2880DSP)

Summary of Responsibilities for the XC7V550T

• Manage 80SerDes links on the 16 VXS payload and 4 QSFP interfaces

• Run detector/experiment specific level 1 trigger algorithms

• Provide scalers and configuration registers to monitor/manage level 1 trigger

• Receive readout trigger and build experiment specific event data, stream to ROC in ZYNQ

• (Future) receive event data from 16 VXS payload and stream to ROC/EB in/through ZYNQ

2.2 XC7Z7030 FPGA
 The XC7Z7030 is an FPGA and processor contained in a single chip. The processor is a dual ARM Cortex-

A9 which runs Linux and the FPGA provides reasonably large resources to deal with hardware interfaces.

Summary of Features for the XC7Z7030

• Dual ARM Cortex A9 1GHz processor, 1GB DDR3 RAM 32bit @ 1333MT/s

• Bootloader in microSD card

• RS232 Console (115200bps, 8b, np) – used for boot configuration and debug terminal

• 10/100/1000Gbps Ethernet – used by Linux O/S

• 32bit data/address bus master which memory maps register space of XC7V550T into processor

• 16bit FPGA configuration bus for programming XC7V550T image

• Dual 16bit AXI streaming bus (up to 40Gbps) receiver from XC7V550T

• 10/40Gbps Ethernet – intended for FPGA accelerated TCP/IP stack for high speed event building

• 1Gbps TI (PP18) full duplex link

• Kintex7 FPGA (78600LUT, 157200FF, 1MB BRAM, 400DSP)

Summary of Responsibilities for the ZYNQ Processor/FPGA

• Execute FSBL and U-Boot bootloaders from microSD card, load centrally managed Linux kernel and

filesystem from NFS

• Program XC7Z7030 and XC7V550T FPGA images on boot from network

• Runs CODA ROC, event building data from TI and XC7V550T

• Report various scalers, temperatures/voltages to EPICS IOC

• Provides drivers for all VTP peripherals

• (Future) use 10/40Gbps Ethernet to stream event builder data from partial hardware accelerated ROC

 4

3.1 Specification & I/O Summary

 The VXS connection is used to interface to the trigger system without the need for loose cabling.

This interface provides the following signals:

Signal Description Direction Signal

Type

Interface

Clock 125/250MHz System Synchronous Clock In LVPECL SD

Trig1 L1 accept trigger bit, synchronous to clock In LVPECL SD

Trig2 L1 accept trigger bit, synchronous to clock In LVPECL SD

Sync L1 synchronization bit, synchronous to clock In LVPECL SD

Busy Module busy signal Out LVDS TI

GTP_TX 1Gbps VTP->TI TILINK Out LVDS TI

GTP_RX 1Gbps TI->VTP TILINK In LVDS TI

SDA/SCL TI I2C slave interface InOut LVTTL TI

STATOUT Payload->VTP status input In LVTTL PP1-16

STATIN VTP->Payload status output Out LVTTL PP1-16

L1 Trigger 8.5Gbps per lane (4) used to generate L1 trigger In/Out CML PP1-16

 5

3.2 Specification Summary

MECHANICAL

• Single width VITA 41 (VXS) Switch Module
Trigger Interface and Switch B signaling
(Signal Distribution module)

• 250MHz Clock (LVPECL)

• Trig1, Trig2, Sync (LVPECL)

• LINKUP out (LVTTL)

• BUSY out (LVTTL)

GIGABIT DATA STREAMS

From/To 16 Payload Slots (FADC, SSP, VETROC, DCRB, etc.)

• 4 full duplex lanes up to 8.5Gbps

• 544Gbps Aggregate

Outputs:

• 32 LVDS front panel outputs to Trigger Supervisor

• 1x RJ45: 100/1000Mbps Ethernet

• 32 I/O expansion mezzanine (LVDS/ECL/PECL/NIM/Analog)

• 4x QSFP Fiber Transceivers (34Gbps)

• 10/100/1000Mbps Ethernet (RJ45)

• 1x QSFP 10/40Gbps Ethernet

• RS232 console serial port

Indicators: (Front Panel)

• Power – Blue LED

• Trigger – Amber LED

• Alarm – Red LED Programming and Trigger Data Input:

• On board JTAG Port

• Virtex 7 550T; 80GTH Gigabit transceivers

• 1GHz ZYNQ-7030 SoC processor with Linux OS

• Global Trigger equation and processing for up to 16 JLAB SubSystem
Processors

• Front End Trigger processing for up to 16 JLAB Flash ADC digitizers

• 8GB Micro SD card support (Linux OS file system + FPGA image)

• 1GB DDR3 SDRAM

Power Requirements:

• +5v @ 10 Amps (typ. from Backplane)

• Local regulators for other required voltages

Environment:

• Forced air cooling: Heat sink

• Commercial grade components (85°C max)

 6

4. PCB Assembly View

 The VTP PCB is a 22-layer impedance controlled FR-408HR stackup

 7

5. ARM CPU Configuration

All VTP board registers (whether in Virtex 7 or Zynq 7) are memory mapped into the Zynq7 CPU

address space. Many peripherals used in the Zynq7 are part of the PS (Processor System) and the Zynq7

technical reference manual can be referred to for details (ug585-Zynq-7000-TRM.pdf). The Zynq7

processor configuration is summarized in the following diagram:

The following table indicates which PS peripherals are used on the VTP:

PS Peripherals:

Peripheral Name Description Address Base
SPI0 Used by: Si5341 clock synthesizer 0xE0006000

I2C0 Used by: 10/40Gbps QSFP for module identification & monitoring 0xE0004000

I2C1 Used by: LTM4676 smbus power supply monitoring 0xE0005000

UART0 U-boot & Linux console 0xE0000000

GPIO Used by: Si5341, LEDs, 10/40Gbps QSFP, VXS STAT IN/OUT 0xE000A000

SD0 µSD card is the Zynq7 boot resource (contains FSBL, U-Boot) 0xE0100000

ENET0 10/100/1000Mbps Ethernet for U-Boot & Linux 0xE000B000

TTC0 U-Boot & Linux OS Timer 0xF8001000

6. Streaming Readout

The VTP was developed as a trigger processor, but the high bandwidth serial connections to the VXS

backplane modules as well as optical outputs has provided an opportunity to convert to a streaming DAQ

architecture (avoiding the need for the trigger data/processing path).

FADC250 Streaming Firmware

The first streaming DAQ implementation with the VTP and FADC250 used the FADC

trigger output as the streaming data source. The trigger output of the FADC250 uses the VXS P0

interface to streaming FADC hits over a 10Gbps interface (4 lanes at 2.5Gbps, 8b10b encoded

provides 8Gbps of usable bandwidth). The 8Gbps usable bandwidth was sufficient to allow a

simple reporting scheme that allows each channel of the FADC250 to report a 13bit charge and

 8

4ns timestamp pulse hit with a 32ns double pulse resolution (e.g. 16ch * (13bit charge + 3bit fine

time) / 32ns = 8Gbps). The FADC250 uses a programmable threshold to detect a leading edge of

pulses. When the leading edge is found, a programmable number of samples before, NSB, and

after, NSA, are summed together to form the pulse integral. A pedestal is subtracted from the

integral and a gain is applied to convert the value into the desired units (typical examples: 1MeV,

100keV, Npe). The resulting value is capped to 8191 so that it fits into the 13bit charge field that

is reported to the VTP – if the value exceeds 8191 the FADC will report 8191 (so this capped

value can be used as an overflow detection if desired). The following figure illustrates this pulse

processing logic:

The FADC250 data format can change easily in the future with firmware updates. Plans are already made

to change the trigger output to report more information (to more closely match the information it typically

reports in VME readout mode), such as time walk corrected timestamping with much higher resolution as

well as raw waveform samples. This additional information will reduce the hit rate capability of the

streaming system, but the bandwidth is significant this limit will still be extremely high for most detector

channels used in experiments at Jlab.

VTP Streaming Firmware

The following image shows the path of the streaming data through the hardware:

FADC Input

FADC250 data is received at 10Gbps (8Gbps of useful data) from each of the 16 payload slots.

Data from each FADC250 is buffered into DDR3 memory where each modules has 256MBytes

of buffering. This buffer is used to allow significant burst of occupancy and/or handle signficant

downstream network delays without loosing any data. If high occupancy persists for too long that

 9

exceeds the network bandwidth then data will be dropped by the VTP and details on this will be

discussed below.

FADC/VTP Streaming Data Path

Currently, the VTP streaming firmware implements 2 parallel instances of the FADC250

streaming system. Each instance handles 8 slots of FADC250, and has a dedicated 2GByte DDR3

buffer and 10Gbps Ethernet link. A future plan is to make 4 parallel instances in the firmware so

that the all 4 lanes of the QSFP are usable for streaming each at 10Gbps (an additional 16 optical

links can be used as well, but are limited to 8.5Gbps or if the speed grade of the FPGA is

increased then 10Gbps is also achievable). Ethernet was chosen for the streaming readout

interface because of its widespread support/compatibility. It is easy to buy additional commercial

switches to scale the network as needed. We also already have significant amounts of VTP and

VXS crates on site at Jlab, so we can take advantage of the available resources and run standard

TCP/IP on the ethernet link to ensure simple and reliable data transfer to nearly any PC.

TCP/IP Interface

The VTP is programmed with the destination IP address and socket for where the 8 FADC slots

of streaming data are sent. We can consider supporting additional destinations/sockets if needed

to distribute a lesser load to servers, but as computing power is increasing it does appear that a

single socket/server per 10Gbps is feasible for data transfers. A hardware accelerated TCP/IP

stack implemented in VHDL is used to achieve deterministic and and throughput on the network.

The TCP transmit buffer is limited to 64kBytes and have been able to achieve ~8Gbps throughput

when streaming to Linux based servers.

Data formatting

Data is built into a TCP data frames that contain a header (containing frame number, timestamps,

and other information helpful in ensuring data coherency and timing synchronization) and a

payload (the customizable information by the streaming DAQ, currently the FADC hit data). The

TCP frames correspond to a programmable span of time, typically 65536ns, for which the

reported FADC hits have been collected. When the DAQ starts, the VTP modules also

synchronously start their timers that are used to timestamp FADC hits. Each time a frame time

has elapsed a TCP data frame is sent containing the hits for that time span. The ‘C’ structure for

the data frame is as follows:

typedef struct stream_buffer

{

uint32_t source_id;
uint32_t total_length;

uint32_t payload_length;

uint32_t compressed_length;

uint32_t magic;

uint32_t format_version;

uint32_t flags;

uint64_t record_counter;

struct timespec timestamp;

uint32_t payload[];

} stream_buffer_t;

source_id: definable by software on each VTP, intended as a unique identifier

 10

total_length: length (in bytes) of stream_buffer_t (including variable length payload, and

excluding source_id)

payload_length: length (in bytes) of payload[] element. Can be zero.

compressed_length: not used, and currently set to payload_length

magic: should always be set to 0xC0DA2019

format_version: used to specify version of this data format (no official versions have been

released yet, so kind of meaningless for now)

flags: no flags have been defined, meaningless for now

payload: variable length (0 to payload_length/4-1), front-end defined readout data

Main features are the timestamp (a 1ns resolution absolute timestamp for the FADC hit data

frame). This timestamp should be added to the local timestamps of the FADC data hits. The

record_counter indicates the frame number and will be received sequentially – if a frame is

dropped due to overflowing data the record_counter will show a jump/gap.

The payload[] data should be parsed by looking for a data type (indicated by bit31=1 and type in

the bits 30:15). The data type indicates the data to follow. The payload[] element contains the

variable length streaming data (e.g. FADC hits). In addition to the FADC hits (data type = 1)

there exists an FADC hit pointer structure (data type = 0) that is used to allow the receiving

software to know where each FADC slot data exists in the payload and how long it is – the

eliminates the need for the receiving end to parse the full payload before distributing parts to

different processes.

The FADC pointer structure is as shown below.

typedef struct fadc_ptr

{

uint32_t type; // set to 0x80000000, bits 30:15=0 (FADC pointer
type)

uint32_t ptr_len[8];

} fadc_ptr_t;

The array of 8 ptr_len elements correspond to the 8 FADC slots reported on this streaming

socket. The 32bit ptr_len contains the offset for the data in payload[] in bits 15:0, and the length

is contained in bits 30:16.

The FADC hit structure is as shown below.

typedef struct fadc_hit
{

 uint32_t type;
 uint32_t hit[];

} fadc_hit_t;

FADC hit type will have the bit assignment: 31=1, bits 30:15=1 (FADC

Hit type), 14:8=roc_id, 4:0=fadc slot number. Then a variable number

FADC hits will follow and have the following format: bit 31=0, bit

30:17=4ns timestamp, 16:13=channel, 12:0=charge

Data loss handling

 11

For the moment the VTP is responsible for dropping streaming data when downstream pipes can’t

accept a higher input rate for long periods of time. Burst conditions (on the order of ~100msec at

32MHz/channel for all channels) are handled without data loss by the VTP DDR3 memory

buffers. When the buffers are full, entire frames (e.g. 65536ns chunks of data) are dropped. These

losses should not happen under normal conditions when the network and processing are sufficient

to keep up with the readout data (or if thresholds are too low) - the record_counter in the CODA

SRO header can be used to identify dropped data.

 12

7. VTP CODA Software ROC

7.1 Description

The VTP Zynq ARM processor is capable of running the traditional CODA ROC software components.

The reason the VTP needs a ROC is mostly for diagnostic event data recording. The VTP performs trigger

processing in many applications where some involve making complex decisions where the efficiency &

correctness of these decisions needs continuous verification and monitoring throughout experiments. The

software ROC is capable of running over 70kHz with event blocking and minimal deadtime. The VTP

receives TI event block data using a proprietary 1Gbps serial link. This same serial link provides

information on the event blocking level, sync event status, and block acknowledgement. TI and VTP

generated event data can be read using single 32bit reads over the AXI bus, or use the AXIS DMA engine

to achieve high performance. Readout is sent to the CODA event builder using the Linux OS controlled

1Gbps Ethernet link.

 13

8. VTP CODA hardware accelerated ROC

8.1 Description

The VTP has a serial link to each VXS payload module primarily used for trigger data, but the link speeds

are programmable and offer additional bandwidth that can be utilized as an alternate path for event data

readout (instead of using the VME bus). The CODA ROC runs partially in software (initialization,

asynchronous event injection, and low data rate synchronous event generation), while the large bandwidth

event building and transport to the CODA EB are done using the FPGA (including a fully firmware based

10Gbps TCP/IP Ethernet solution).

The primary benefits are:

1) payload modules can be readout in parallel (where on VME they were readout sequentially)

2) readout bandwidth from payload modules to the VTP is guaranteed and not shared

3) the VTP readout bandwidth to the CODA event builder is close to 10Gbps (and upgradable to 40Gbps in

a future firmware)

4) setups that already have a VTP installed for triggering purposes can receive this accelerated readout

option is basically at no cost (for setups without a VTP, the cost is only the VTP which is often much

cheaper than replacing the full front-end hardware)

The following diagram illustrates the hardware/firmware resources used:

Serialized event data will be separated from the trigger input streams and buffered into one of the 2GByte

DDR3 memories. The bandwidth of this memory is ~10GByte/s so is plenty capable of sustaining the

traffic to saturate the 10Gbps Ethernet link. Future implementations can take advantage of multiple 10Gbps

 14

links or possibly use a single 40Gbps Ethernet link. Event data from the payload modules are buffered into

the DDR3 memory. The Virtex 7 FPGA can arrange the payload module data from each module to be

assembled into 1 of 3 definable EVIO banks. All 16 payload modules can go into a single EVIO bank, or

they can be split up into any of the 3 banks. This is useful in the case where multiple different module types

exist in the crate and if it is desired their data lives in different EVIO banks. The Virtex 7 builds a single

EVIO bank and computes the length, which contains up to 3 EVIO banks containing the payload data (so

we’re builing an EVIO bank of banks). The structure used is as follows, with type = 0x10 for the main

EVIO bank, and the 1 to 3 banks inside use type = 0x1 for 32bit unsigned types):

This Virtex 7 EVIO bank header information is presented to the Zynq 7 FPGA where the final EVIO

structure is built intended to communicate directly with CODA event builders. This final format adheres to

the following structure:

The Zynq 7 FPGA will assemble the Payload Bank which contains the TI block data, and optionally an

ARM CPU generated Data Block, and the Virtex 7 Data Block following this format:

 15

The VTP HW CODA ROC will only build physics events in firmware. CODA control events that are not

physics events must use the VTP ARM Processor asynchronous event data interface. This asynchronous

interface can be used to generate the required control events at the beginning and end of runs (but it can

also be used to send asynchronous event data in the middle of ongoing runs for things like scalers, config

data, or whatever else may be useful to record).

8.2 ARM CPU Peripheral Configuration

The ARM CPU/FPGA peripherals are as follows (and will be made standard on all VTP CODA ROC

firmware versions):

1) AXIS DMA (TI): allows DMA transfer of TI event blocks into ARM system memory
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

2) AXI Bridge to Z7: allows CPU AXI-lite transactions to Zynq FPGA peripherals

3) AXI Bridge to V7: allows CPU AXI-line transactions to Virtex 7 FPGA peripherals (and also the same

bus used to load the Virtex 7 FPGA firmware)

8.3 Zynq 7 FPGA Peripheral Configuration

Zynq 7 FPGA peripherals exist on the “AXI Bridge to Z7” component. The peripheral address offsets are

described here (and are relative to the “AXI Bridge to Z7”):

https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

 16

https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_z7/vtp_z7_pkg.vhd

Peripherals used on the VTP CODA ROC are as follows (and will be made standard on all VTP CODA

ROC firmware versions):

PER_ID_TI

1Gbps link between VTP and TI used to transfer block of TI event data and control/acknowledge signals

between these modules.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_z7/z7_ti_per/z7_ti_per.vhd

PER_ID_CLK

Z7 FPGA clocks, resets, firmware version & timestamp.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_z7/z7clk_per/z7clk_per.vhd

PER_ID_CODA_ROC

HW CODA ROC, also allows asynchronous and synchronous event data injection.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_z7/coda_roc_per/coda_roc_per.vhd

PER_ID_10GBE_TCPIP_CLIENT0

HW 10Gbps TCP/IP Ethernet stack. The VTP CODA ROC uses this interface as a TCP client (e.g. it makes

the connection to the TCP server)
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_z7/z7_10GbE_tcpip_per/z7_10GbE_tcpip_per.vhd

PER_ID_EBIORX0

V7->Z7 16Gbps data bus receiver where the V7 FPGA CODA EVIO bank is received (which contains data

from the VXS payload modules)
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_z7/ebio_rx_per/ebio_rx_per.vhd

8.4 Virtex 7 FPGA Peripheral Configuration for FADC readout

Virtex 7 FPGA peripherals exist on the “AXI Bridge to V7” component. The peripheral address offsets are

described here (and are relative to the “AXI Bridge to V7”):
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/vtp_v7_pkg.vhd

PER_ID_CLK

V7 FPGA clocks, resets, firmware version & timestamp.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7clk_per/v7clk_per.vhd

PER_ID_QSFP0..3

QSFP transceiver and data links
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7aurora8b10b_per/v7aurora8b10b_per.vhd

PER_ID_VXS0..15

VXS transceiver data links. Actual payload ID is +1 to the peripheral index.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7aurora8b10b_frm_per/v7aurora8b10b_frm_per.vhd

PER_ID_SD

Signal distribution management peripheral.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7sd_per/v7sd_per.vhd

PER_ID_EVT_BUILDER

V7 payload module EVIO bank configuration
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/vtp_evt_builder_per/vtp_evt_builder_per.vh

d

PER_ID_MIGPER_R

V7 DDR3 memory configuration

https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_z7/vtp_z7_pkg.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_z7/z7_ti_per/z7_ti_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_z7/z7clk_per/z7clk_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_z7/coda_roc_per/coda_roc_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_z7/z7_10GbE_tcpip_per/z7_10GbE_tcpip_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_z7/ebio_rx_per/ebio_rx_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/vtp_v7_pkg.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7clk_per/v7clk_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7aurora8b10b_per/v7aurora8b10b_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7aurora8b10b_frm_per/v7aurora8b10b_frm_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7sd_per/v7sd_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/vtp_evt_builder_per/vtp_evt_builder_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/vtp_evt_builder_per/vtp_evt_builder_per.vhd

 17

https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7mig_per/v7mig_per.vhd

PER_ID_EBIO_TX0

V7->Z7 16Gbps data bus transmitter where the V7 FPGA CODA EVIO bank is received (which contains

data from the VXS payload modules)
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/ebio_per/ebio_tx_per.vhd

8.5 Virtex 7 FPGA Peripheral Configuration for MPD readout

MPD readout is very similar to the standard FADC readout except that each payload port may have up to 4

MPD connections. Currently only 32 MPD may be readout using VME slots 3-10 (this may be expanded in

the future if needed). The MPD also has a unique processing block to perform zero suppression, common-

mode subtraction, and remote register access so that MPD readout will be done using a dedicated V7 FPGA

image/type. Virtex 7 FPGA peripherals exist on the “AXI Bridge to V7” component. The peripheral

address offsets are described here (and are relative to the “AXI Bridge to V7”):
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/vtp_v7_pkg.vhd

PER_ID_CLK

V7 FPGA clocks, resets, firmware version & timestamp.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7clk_per/v7clk_per.vhd

PER_ID_MPDFIBER0..31

MPD fiber control and processing interface. Fiber 0,1,2,3 correspond to the serial lanes VME slot 3. Fiber

4,5,6,7 correspond to the serial lanes of VME slot 4, etc. The VME slots are requires to have a VXS to

QSFP payload module that converts the serial link to optics that interface the MPD.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_mpd_readout_v7/mpd_fiber_per/mpd_fiber_per.vhd

PER_ID_MPDREGS

This peripheral is used to access registers on the remote MPD.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_mpd_readout_v7/mpd_register_per/mpd_register_per.vhd

PER_ID_SD

Signal distribution management peripheral.
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7sd_per/v7sd_per.vhd

PER_ID_EVT_BUILDER

V7 payload module EVIO bank configuration
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/vtp_evt_builder_per/vtp_evt_builder_per.vh

d

PER_ID_MIGPER_R

V7 DDR3 memory configuration
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7mig_per/v7mig_per.vhd

PER_ID_EBIO_TX0

V7->Z7 16Gbps data bus transmitter where the V7 FPGA CODA EVIO bank is received (which contains

data from the VXS payload modules)
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/ebio_per/ebio_tx_per.vhd

https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7mig_per/v7mig_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/ebio_per/ebio_tx_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/vtp_v7_pkg.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7clk_per/v7clk_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_mpd_readout_v7/mpd_fiber_per/mpd_fiber_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_mpd_readout_v7/mpd_register_per/mpd_register_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7sd_per/v7sd_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/vtp_evt_builder_per/vtp_evt_builder_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/vtp_evt_builder_per/vtp_evt_builder_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_v7/v7mig_per/v7mig_per.vhd
https://github.com/JeffersonLab/fe_fw/blob/devel/Firmware/Source/vtp_vxs_readout_v7/ebio_per/ebio_tx_per.vhd

 18

9. NPS Cluster Trigger

9.1 Description
The NPS calorimeter is comprised of an array of 30x36 PbWO4 blocks with a PMT and analog amplifier for each

block. The amplifiers connect to the Jlab FADC250 modules for creating a trigger and readout. The purpose of the

NPS cluster trigger is to find clusters in the calorimeter with high efficiency and minimal bias. When a cluster is

found over threshold a trigger signal will be sent to the counting where it can trigger the DAQ directly or be used in

coincidence with other detectors.

The segmentation of the calorimeter into VXS crates & FADCs was done such that each crate looked the same:

same number of channels and the local mapping/view of the calorimeter was the same. This allows the clustering

firmware in the VTP to be the same in all crates and only a Y coordinate offset is needed to distinguish each crate.

The top of the calorimeter also works this way even though it has fewer channels. The following figure illustrates

the segmentation and DAQ connections:

Another requirement of the NPS cluster trigger is to support sparsification of the FADC250 readout channels and

only readout FADC channels centered on found clusters. This allows the FADC250 readout to report the full raw

waveforms for event data, which is data volume intensive, but the sparsification will reduce the number of reporting

channels from 1080 to a much smaller fraction. This significantly reduces the data volume and at the same time

allows readout of waveforms for very small signals around the cluster center without having to apply an individual

channel threshold online.

9.2 Trigger data flow

9.2.1 FADC pulse detection
The trigger processing begins in the FADC250 with identifying and measuring the total charge of individual pulses

on each channel. A software configurable threshold, FADC250_TET, which sets a common threshold for one or

more FADC250 modules. These units are in FADC units: for NPS the FADC250 are in 1V dynamic range mode, so

each FADC sample unit is 1V/4096 = 244µV. The threshold is relative to the software defined pedestal,

FADC250_ALLCH_PED, which is a floating-point number specifying how many FADC units should be removed

from each sample when performing a pulse integral. When the FADC input samples see a threshold crossing

(previous sample <= PED+TET, next sample > TET) the pulse sum is formed around the threshold crossing: NSB

(number of samples before the threshold crossing) and NSA (number of samples after the threshold crossing)

samples are summed to compute the pulse integral. Next the pedestal is subtracted, and the gain is applied. The

resulting pulse integral can be summarized by (where Sample[] is the array of FADC samples and N is the sample

where the threshold crossing occurs):

 19

𝑃𝑢𝑙𝑠𝑒𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙  =  𝐺𝐴𝐼𝑁 ⋅ ∑ (𝑆𝑎𝑚𝑝𝑙𝑒(𝑛) − 𝑃𝐸𝐷)

𝑁+𝑁𝑆𝐴−1

𝑛=𝑁−𝑁𝑆𝐵

Integrated pulses can overlap, the requirements needed to ensure a pulse integration occurs is:

1. A threshold crossing is seen

2. No threshold crossing occurred in the past 7 clock cycles (last 28ns)

The second requirement is needed to ensure no more than 1 pulse every 32ns can be reported (this is a bandwidth

limit on the communication link from FADC -> VTP). It also helps to suppress multiple threshold crossings due to

pulse ringing or noise. This also means the FADC trigger path can miss a legitimate pulse if too close to a previous

one. The pulse integration is summarized by the lower “Trigger Path” part of the following figure:

The resulting pulse integral must also be constrained to 13bits due to bandwidth limitations. So it is important that

the FADC GAIN parameter is set so that the desired pulse integral dynamic range is scaled to fit in the 0 to 8191

range set by the 13bit limitation. Normally the GAIN is setup such that the resulting gained integral units are in

MeV. After applying the gain, any values less than 0 saturate at 0 and any values greater than 8191 saturates at

8191.

9.2.2 Streaming FADC hits to VTP
Each FADC250 communicates with the VTP using 4 full duplex dedicated links per FADC250. Each link runs at

3.125Gbps with 8b10b encoding. This results in 10Gbps of bandwidth availble between each FADC250 to the VTP.

The Xilinx Aurora framing protocol is used as a lightweight interface, which defines all the necessary control

characters, synchronization, lane-bonding, and framing parameters to make it easy to develop on top of. The FADC

sees a 64bit data path running at 156.25MHz and it must fit 31.25MHz * 16 channels * 16bits of pulse

integral/timing information. The necessary bandwidth for this trigger path is 8Gbps, where the FADC can

effectively send 13bit energy, 3bit timestamp for 16 channels every 32ns. The 3bit timestamp is needed to identify

the pulse time to 4ns resolution within the 32ns window the data is sent. The VTP receives this stream and decodes

it such it sees FADC channel pulse integrals for all 256 channels with 4ns timing resolution – the generic basis from

which a variety of applications can take this data to build custom algorithms.

Clustering also has to work seamlessly across the VXS crate boundaries. To do this the FADC pulses are the crate

borders are exchanged with the adjacent crate. The segmentation of the calorimeter channels was done to ensure the

bordering channels were able to fit on a single VTP fiber link (which runs at 20Gbps 8b10b, so 16Gbps usable –

exactly enough to send 32 FADC channels over 1 link). These links are bi-directional so a crate sending FADC

pulses to the adjacent crate will also receive from that crate so that same crate. The FADC250 channel/slot map is

shown along with the channels shared and what VTP fibers are used to do that (shown all the way on the right):

 20

As mentioned before the firmware for each of the VTPs is the same so that locally they see the same channel map

(the only parameter the VTPs need set is the unique Y offset set by software). It is as follows:

The final resulting FADC pulse stream seen by each VTP consist of the local FADC250 pulses reported over the

VXS backplane and the remote FADC250 pulses received over fiber shared from adjacent VTPs. The data from

these different sources show up at different times due to different path delays. To remove this skew, the VTP is

configured to know which FADC and Fiber ports are active for the trigger processing. Once the TS releases SYNC,

the FADC250 stream integrated pulses to the VTPs, the latency is around 300ns for a small NSA parameter (e.g.

NSA ~36ns). The VTP forwards certain FADC channels over fiber to the adjacent VTPs. The FADC pulses are all

stored in a FIFO that are not read until all enabled FADC and fiber sources have data ready. Once all FIFOs have

data ready the VTP can begin reading and this provides the full FADC pulse information that is aligned in time that

the trigger logic can begin to process. The overall latency of this is about 1800ns (time for data from FADC to be

read by VTP trigger logic that is aligned in time across all slots & fibers).

9.3 Clustering logic
Clustering is performed on FADC pulses in both space and time using all possible overlapping 3x3 views of the

calorimeter. This results in 1080 possible views and is how many cluster processing units running in parallel to

quickly perform this task (in about 96ns). A single cluster processing unit needs to see only the 3x3 view of FADC

channels it will cluster. Within the cluster processor, a cluster will be found/formed using the following rules:

a. Central block has energy >= software defined cluster seed threshold defined by the config

VTP_NPS_ECALCLUSTER_SEED_THR

b. Central block energy is >= all immediate surrounding block energies in 3x3 view (i.e. it is a local

maximum) that are withing the timing coincidence window defined by

VTP_NPS_ECALCLUSTER_HIT_DT

c. The cluster sum is formed by adding up the pulse energy of the central crystal along with the

largest pulse energy in the timing coincidence window (defined by

 21

VTP_NPS_ECALCLUSTER_HIT_DT) from each of the 8 channels surrounding the central

block

d. The cluster seed position is the reported (X,Y) position and time of the cluster, along with the

cluster sum, and the number of channels that had a hit in the 3x3 window

The following figure shows a single 3x3 cluster processor view and the cluster it forms given a seed threshold of 2

and hit_dt = +/-8ns

Finding clusters in both space and time prevent multiple clusters from being found from adjacent 3x3 views so that 1

cluster is reported for each physical cluster in the calorimeter (exceptions to this can be if the channels have poorly

calibrated gains, thresholds, pedestals, timing offsets, noise, and/or cable reflections).

All of these found clusters are send to various trigger processing stages (cluster singles and cluster pair processing).

These clusters are stored in an 8µs, similar to FADC samples, so that when the system is triggered the VTP will

record all found clusters in its readout window (useful for verification and monitoring clusters that the FADC may

not readout due to sparisfication cuts).

9.4 Trigger Types
The following sections will describe the conditions needed to meet the trigger bit requirements that generate the

VTP trigger bit pulses. See section “VTP Trigger Bits & V1495 Trigger Bits” for trigger bit mapping details.

9.4.1 Cluster singles trigger
Cluster singles trigger is the primary NPS production data trigger. The conditions to create a trigger are as follows

(where a single cluster must satisfy all conditions):

Cluster.Energy >= VTP_NPS_ECALCLUSTER_CLUSTER_TRIGGER_THR

Cluster.NHits >= VTP_NPS_ECALCLUSTER_NHIT_MIN

When the condition is satisfied the trigger time is a based on the Cluster.Time, which is the central hit/seed hit time.

It is delayed by the software programmed trigger latency parameter:

VTP_NPS_TRIG_LATENCY

9.4.2 Cluster pair trigger
The cluster pair trigger was requested and added late in the design and the original architecture wasn’t setup for a

global multiplicity or pair processing (e.g. cluster sum cuts). Individual clusters must meet the following condition

(note it shares the same config parameter for NHits cut, but a unique on for the cluster threshold):

Cluster.Energy >= VTP_NPS_ECALCLUSTER_CLUSTER_PAIR_TRIGGER_THR

Cluster.NHits >= VTP_NPS_ECALCLUSTER_NHIT_MIN

Local PAIR1 trigger logic

Cluster that past the above conditions will generate a “PAIR1” trigger pulse trigger bit – this trigger signal

there is at least 1 cluster in the local crate that satisfies the pair cluster condition. The V1495 will generate a

PAIR trigger if it finds 2 or more VTPs with a “PAIR1” trigger asserted at the same time. The coincidence

width the V1495 sees for PAIR1 trigger bit inputs is defined by the VTP trigger bit pulse width

VTP_NPS_TRIG_WIDTH. The V1495 will generate a 100ns trigger pulse to send to the trigger

supervisor (when two or more PAIR1 VTP trigger bits are asserted).

Local PAIR2 trigger logic

A separate trigger bit PAIR2 is generated by each VTP that is asserted when two or more clusters are found

in the local crate that both satisfy the above Cluster.Nhits and Cluster.Energy cuts used for the pair trigger.

The coincidence window is programmable by the parameter

VTP_NPS_ECALCLUSTER_CLUSTER_PAIR_TRIGGER_WIDTH. The trigger bit is sent to the

 22

V1495 using the trigger bit pulse width define by VTP_NPS_TRIG_WIDTH. The V1495 OR’s all PAIR2

trigger bits from the VTPs together and this is sent to the trigger superviser.

• Note: the pairs found in the V1495 generate a trigger pulse on the same output that the PAIR2

triggers are OR’d onto. So only one pair trigger bit is provided to the counting house trigger

supervisor.

9.4.3 Cosmic trigger - scintillator

There are 4 scintillator bars connected to nps-vme3 FADC250 slot 20:

Scintillator top bar 0: FADC slot 20, channel 0

Scintillator top bar 1: FADC slot 20, channel 1

Scintillator bottom bar 0: FADC slot 20, channel 2

Scintillator bottom bar 1: FADC slot 20, channel 3

The cosmic trigger will trigger when any hit in either top scintillator is in timing coincidence with any hit in either

bottom scintillator. The trigger time will be timed with respect to when both top and bottom are seen in coincidence.

The coincidence time is programmable and determines the coincidence time, VTP_NPS_COSMIC_SCINT_DT. A

hit on any of these scintillator channels is defined as any FADC250 threshold crossing on the scintillator that has a

non-zero integrated energy (integration by FADC250 NSB & NSA, pedestal subtraction, and gain applied => pulse

energy).

9.4.4 Cosmic trigger – calorimeter column

This calorimeter column trigger is satisfied by any NPS VTP when it sees FADC channels in a single column of its

crate meet the software defined multiplicity in the timing coincidence window. The VTP doesn’t apply any

threshold cuts, but it does require a non-zero pulse that has crossed the FADC250 channel threshold to see a channel

hit. Within each crate, a column is only 8 crystals tall. The multiplicity can be changed from 1 to 8 so conditions can

be relaxed if inefficiencies are expected. In addition, there is a veto option that will reject any column trigger if a hit

exists anywhere else in another column of the same crate – this is very helpful at rejecting corner clipping tracks.

The V1495 can be setup to OR the crates or AND them. When enabling the veto and performing a crate AND at the

V1495 almost all events are vertical tracks constrained to a single column of the whole calorimeter – so the event

rate is low and purity very high.

FADC event examples (FADC channels with hits in event. A low threshold often causes channel to see multiple

hits) from the testing in EEL with a 3 crate setup (high multiplicity, veto enabled, v1495 AND mode – column shifts

may be seen at Y = multiple of 8 boundaries):

 23

9.4.5 VLD trigger

The VLD trigger is used for LED trigger runs. The VLD modules have their trigger outputs all OR’d together in a

daisy-chained connection with the last module being used as the trigger source for the VLD system. It connects to

nps-vme3, FADC250 slot 20 (a spare FADC not used by NPS calorimeter), channel 15. Using the FADC250 as the

trigger input allows the latency to closely match the NPS cluster trigger. This trigger is simple as it generates a

trigger anytime a leading edge is seen on the FADC input. See section “VTP Trigger Bits & V1495 Trigger Bits” for

trigger bit mapping details.

9.5 Sparisfication
NPS calorimeter sparsification was done to significantly reduce the data rate while simultaneously supplying raw

waveform readout for channels around the cluster (so no individual channel threshold is needed to readout the

FADC channels of the cluster, potentially improving offline reconstruction resolution). Either a 5x5 or 7x7 channel

pattern centered on the trigger cluster seed is used to determine which FADC channels to readout. The VTP uses

another cluster energy threshold to determine what clusters will allow FADC channels to be readout:

VTP_NPS_ECALCLUSTER_CLUSTER_READOUT_THR. When the DAQ issues a trigger, the VTP looks

back in time to find clusters >= VTP_NPS_ECALCLUSTER_CLUSTER_READOUT_THR (a lookback time

and window width is used so that trigger latency and jitter can be compensated for). Any clusters satisfying the

readout cluster threshold will result in a 5x5 or 7x7 FADC channel pattern (selectable by software configuration) to

be readout centered on the seed/central block of the clusters. The VTP sends the readout channels masks to all

FADCs so they know which channels to keep and throw away data for on each event.

Some examples of this sparsified cluster readout can be shown by the following tests. The pictures show the

calorimeter channel layout with yellow blocks indicating the FADC channels the readout sees raw waveforms for

and the numbers show where and how many clusters the VTP found at that cluster center position. You can see a

variety of examples showing 7x7 readout patterns for separate and overlapping cluster events:

 24

A critically important detail is the timing diagram that illustrates the parameters to setup to ensure a trigger can

properly be timed in to capture the VTP clusters to determine these channels patterns. The two main parameters to

adjust this timing is the VTP_NPS_FADCMASK_WIDTH and VTP_NPS_FADCMASK_OFFSET. These

parameters decide which time range in the VTP readout window will be looked at to determine which clusters

satisfy the readout cluster threshold. The “OFFSET” parameter determines at what point in time of the readout

window the VTP will evaluate what clusters are evaluated – the example image below shows this offset at 250ns in

the readout window (look at the blue curve, which is the FADC reconstructed cluster trigger times). Then the

“WIDTH” parameter determines how much time before and up to the “OFFSET” the VTP will also look for clusters

over the readout threshold – the example shows a width of 200ns. In this example you can see we consider clusters

from 50ns to 250ns in the readout window, centered with plenty of margin around the physics peak at 150ns. When

we readout the FADC channel, we readout the full waveform for the entire (which spans 400ns in the example) - this

is why we also see a suppressed background outside the 50ns to 250ns range.

9.6 VTP Trigger bits & V1495 Trigger Bits
Each VTP outputs its trigger bits on the front panel ribbon cable (LVDS signals) and they are mapped as follows:

VTP Trigger Bit 0: Cluster Singles

 25

VTP Trigger Bit 1: Cosmic Scintillator

VTP Trigger Bit 2: Cosmic Column

VTP Trigger Bit 3: Pair 1

VTP Trigger Bit 4: Pair 2

VTP Trigger Bit 5: VLD

9.6.1 Latency

The latency of these triggers (roughly the time from an input at the FADC250 to where the VTP produces an output

on its trigger bit output) is defined by the programmable parameter:

VTP_NPS_TRIG_LATENCY

This latency must be at least as long as the total trigger path processing time to ensure deterministic behavior (as of

the beginning of NPS runs, it has needed to be least 2.3µs). This parameter can be adjusted to bring it into

coincidence with other detectors, but each trigger bit can be individually delayed with the following parameter:

VTP_NPS_TRIG_DELAY.

9.6.2 Prescaling

Trigger bits can also be prescaled with the following parameter: VTP_NPS_TRIG_PRESCALE

9.6.3 Trigger width

A programmable trigger bit pulse width (common to all trigger bits) can also be set (VTP_NPS_TRIG_WIDTH).

This width can be used to set the desired coincidence width. If the coincidence width is desired to be set outside the

VTP, it is important to use a small width for the VTP if the outside logic is edge sensisitive: the VTP trigger bit

widths work in “updating” mode – that is, they will extend the pulse width if another trigger happens while the

trigger output is already active. An edge-sensitive logic outside the VTP can have efficiency losses due to pileup at

the VTP trigger bit.

9.6.4 V1495

The V1495 is a programmable logic/FPGA unit from CAEN. It is used in NPS to consolidate the trigger bits from 5

VTPs to a few trigger cables that can run to the Hall C counting room. The V1495 accepts the VTP trigger bits over

5 different ribbon cables and it outputs the trigger bits to the Hall C counting house over coaxial cable using NIM

drivers. The V1495 trigger bit outputs are as follows:

V1495.F1: T1 NPS calorimeter cluster trigger (logical OR of all VTP Trigger Bit 0)

V1495.F2: T2 NPS calorimeter scintillator coincidence (npsvtp3 only, VTP Trigger Bit 1)

V1495.F3: T3 NPS calorimeter cosmic column trigger OR (logic OR of all VTP Trigger bit 2)

V1495.F4: T4 NPS calorimeter cosmic column trigger AND (logic AND of all VTP Trigger bit 2)

V1495.F5: T5 VLD (npsvtp3 only, VTP Trigger Bit 5)

V1495.F6: T6 NPS calorimeter pair trigger (logical OR of all VTP Trigger Bit 4 or multiplicity

>=2 of all VTP Trigger bit 3)

V1495 triggers T1 to T5 are simple asynchronous boolean functions – no pulse width or edge detection done, so the

output widths are defined by the VTP trigger pulse widths. T6 is different because the V1495 needs to perform a

multiplicity trigger and reform the trigger pulse width to ensure a minimum trigger pulse width is made so that it

will arrive to the counting house over the long cable run. T6 is an OR of all “Pair 2” trigger bits – these are triggers

from each VTP where 2 or more clusters satisfying the pair trigger are within that crate – so the VTP will definie the

V1495 pulse width for these. “Pair 1” requires a multiplicity >=2 condition (2 or more VTPs have to assert this at

the same time so we trigger from 2 or more clusters in different crates). The VTP trigger pulse width defines the

coincidence width used by the pair 1 multiplicity logic. When the V1495 finds 2 or more Pair 1 trigger bits asserted

at the same time, it will create a 100ns pulse width on the T6 output (it works in updating mode as well, so new pairs

triggers will extend this pulse width if already active).

9.6.5 NPS Trigger Timing Diagram

 26

The overall trigger latency is driven by multiple delays in the system (optical/electrical cables & backplanes,

serialization logic, trigger logic, and others). The timing can be seen in the following figure where the NPS pulses

seen at the FADC250 input is used as the timing reference:

- Cursor 0: NPS calorimeter pulses seen at the FADC250.

- Cursor 1: VTP receives the pulse integral from the FADC hits

- Cursor 2: VTP shares pulse integrals to adjacent crates (to deal with FADC pulse sharing to adjacent

crates at the crate perimeter so 3x3 clustering works seamlessly)

- Cursor 3: pulses from all fibers & local VXS FADCs that have been aligned in time (serialization

introduces jitter, so firmware must remove this jitter with buffering)

- Cursor 4: 3x3 clusters have been found

- Cursor 5: cluster seeds identified (to be used for FADC cluster readout sparsification)

- Cursor 6: Cluster trigger (single cluster > threshold trigger shown)

- Cursor 7: Cluster seeds aligned (local and adjacent VTP crate seeds)

- Cursor 8: Cluster seeds mapped to FADC channels

- Cursor 9: Global cluster trigger (some delay for marging to allow firmware to increase latency if needed,

cabling to V1495 and logic also included)

- Cursor 10: Level 1 accept received by VTP

- Cursor 11: VTP decodes FADC channel pattern (from seeds) related to Level 1 accept timing and sends

readout channel pattern to the FADC for raw waveform readout

9.7 Event builder data types
Data will be reported from each nps-vtp (1-5). Each VTP processes different regions of the NPS calorimeter, so the

data from all VTP should be combined to see the full event information. This data will be wrapped in an EVIO

formatted data bank which is not described in this document. Refer to the CODA configuration for ROC ID

assignments and the readout list for the EVIO bank types/tags used to encapsulate the following described data.

9.7.1 Data Word Categories

Data words from the module are divided into two categories: Data Type Defining (bit 31 = 1) and Data Type

Continuation (bit 31 = 0). Data Type Defining words contain a 4-bit data type tag (bits 30 - 27) along with a type

dependent data payload (bits 26 - 0). Data Type Continuation words provide additional data payload (bits 30 – 0)

for the last defined data type. Continuation words permit data payloads to span multiple words and allow for

efficient packing of various data types spanning multiple data words. Any number of Data Type Continuation

words may follow a Data Type Defining word.

 27

9.7.2 Data Type List

0 Block Header

1 Block Trailer

2 Event Header

3 Trigger Time

12 Expanded (Data SubType)

12.11 NPS Cluster

13 Trigger Decision

14 Data Not Valid (empty module)

15 Filler Word (non-data)

 28

Data Type: Block Header

Type: 0

Size: 1 word

Description: Indicates the beginning of a block of events. (High-speed readout of a board or a set of

boards is done in blocks of events)

31 30 29 28 27 26 25 24

1 0 0 0 0 SLOTID

23 22 21 20 19 18 17 16

SLOTID UNDEFINED EVENT_PER_BLOCK

15 14 13 12 11 10 9 8

EVENT_PER_BLOCK

7 6 5 4 3 2 1 0

BLOCK_CNT

BLOCK_CNT:

Event block number (used to align blocks when building events)

EVENT_PER_BLOCK:

Number of events in block

SLOTID:

Slot ID (set by VME64x backplane)

Data Type: Block Trailer

Type: 1

Size: 1 word

Description: Indicates the end of a block of events. The data words in a block are bracketed by the

block header and trailer.

31 30 29 28 27 26 25 24

1 0 0 0 1 SLOTID

23 22 21 20 19 18 17 16

SLOTID NUM_WORDS

15 14 13 12 11 10 9 8

NUM_WORDS

7 6 5 4 3 2 1 0

NUM_WORDS

NUM_WORDS:

Total number of words in block of events

SLOTID:

Slot ID (set by VME64x backplane)

 29

Data Type: Event Header

Type: 2

Size: 1 word

Description: Indicates the start of an event. The included trigger number is useful to ensure proper

alignment of event fragments when building events.

31 30 29 28 27 26 25 24

1 0 0 1 0 UNDEFINED

23 22 21 20 19 18 17 16

UNDEFINED TRIGGER_NUMBER

15 14 13 12 11 10 9 8

TRIGGER_NUMBER

7 6 5 4 3 2 1 0

TRIGGER_NUMBER

TRIGGER_NUMBER:

Accepted event/trigger number

Data Type: Trigger Time

Type: 3

Size: 2 words

Description: Time of trigger occurrence relative to the most recent global reset. The time is measured

by a 48bit counter that is clocked from the 250MHz system clock. The assertion of the

global reset clears the counter. The de-assertion of global reset enables counter and thus

sets t=0 for the module. The trigger time is necessary to ensure system synchronization

and is useful in aligning event fragments when building events.

Word 1:

 31 30 29 28 27 26 25 24

1 0 0 1 1 UNDEFINED

23 22 21 20 19 18 17 16

TRIGGER_TIME_L

15 14 13 12 11 10 9 8

TRIGGER_TIME_ L

7 6 5 4 3 2 1 0

TRIGGER_TIME_ L

TRIGGER_TIME_ L:

This is the lower 24bits of the trigger time

Word 2:

 31 30 29 28 27 26 25 24

0 UNDEFINED

23 22 21 20 19 18 17 16

TRIGGER_TIME_H

15 14 13 12 11 10 9 8

TRIGGER_TIME_ H

7 6 5 4 3 2 1 0

TRIGGER_TIME_ H

TRIGGER_TIME_ H:

This is the upper 24bits of the trigger time

 30

Data Type: NPS Cluster

Type: 12.11

Size: 2 words

Description: This data type identifies a cluster

Word 1:

 31 30 29 28 27 26 25 24

1 1 1 0 0 1 0 1

23 22 21 20 19 18 17 16

1 - - - - - - -

15 14 13 12 11 10 9 8

- - E

7 6 5 4 3 2 1 0

E

E: 14bit unsigned cluster energy

Word 2:

 31 30 29 28 27 26 25 24

0 - - - - - Y

23 22 21 20 19 18 17 16

Y X

15 14 13 12 11 10 9 8

X N T

7 6 5 4 3 2 1 0

T

X: 5bit unsigned cluster X coordinate

Y: 6bit unsigned cluster Y coordinate

T: 11bit cluster time in 4ns units referenced from the beginning of the readout window

N: 4bit number of hits in the cluster

 31

Data Type: Trigger Decision

Type: 13

Size: 2 words

Description: This data type reports trigger decision made. A 32bit trigger bit pattern is reported with

4ns timestamp relative to the readout window indicates where the VTP found a valid

trigger. If multiple triggers happen at the same time then multiple bits will be set in the

32bit trigger bit pattern word. A trigger decision pattern will be recorded for each unique

time in the VTP readout window.

Word 1:

31 30 29 28 27 26 25 24

1 1 1 0 1 T

23 22 21 20 19 18 17 16

T

15 14 13 12 11 10 9 8

TRIGBITS_L

7 6 5 4 3 2 1 0

TRIGBITS _L

TRIGBITS_L: Trigger bits 15:0

T: 11bit trigger bit pattern time in 4ns units

(referenced from the beginning of the readout window)

Word 2:

31 30 29 28 27 26 25 24

0 - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

TRIGBITS_H

7 6 5 4 3 2 1 0

TRIGBITS_H

TRIGBITS_H: Trigger bits 31:16

Note: For NPS, the following trigger bits have been defined:

TriggerBit0: NPS Cluster Trigger, cluster >= threshold

TriggerBit1: Cosmic scintillator trigger, or(ScintTop) and or(ScintBot)

TriggerBit2: Cosmic calorimeter column trigger, or(mult(Columnn) > mult_min)

These trigger bits from each nps-vtp will be processed in an additional stage using a CAEN

 V1495 FPGA module so the mapping of these bits into the Trigger Supervisor will be different

 from above (this should be documented in the NPS DAQ trigger setup when implemented).

Data Type: Data Not Valid

Type: 14

 32

Size: 1 word

Description: Module has no data available for readout. This can if the module is being read out too

quickly after receiving (event building is in process and no data words have been put into

the buffer yet) a trigger or if the module doesn’t have any events to report.

31 30 29 28 27 26 25 24

1 1 1 1 0 UNDEFINED

23 22 21 20 19 18 17 16

UNDEFINED

15 14 13 12 11 10 9 8

UNDEFINED

7 6 5 4 3 2 1 0

UNDEFINED

Data Type: Filler Word

Type: 15

Size: 1 word

Description: Non-data word appended to the block of events. This is used to force the total number of

32-bit words read out of a module to be a multiple of 2 or 4 when

31 30 29 28 27 26 25 24

1 1 1 1 1 UNDEFINED

23 22 21 20 19 18 17 16

UNDEFINED

15 14 13 12 11 10 9 8

UNDEFINED

7 6 5 4 3 2 1 0

UNDEFINED

 33

9.8 Configuration Parameters

VTP_W_WIDTH <width>

Sets the VTP readout window width in units of nanosecond ranging from 0 to 8188. VTP triggers and

clusters in the readout window will be recorded for each VTP event.

VTP_W_OFFSET <offset>

Sets the VTP readout window offset (or lookback time) in units of nanosecond ranging from 0 to 8191.

VTP triggers and clusters in the readout window will be recorded for each VTP event. Note this window

parameter is also used by the sparisfication cluster detection logic (the sparsification offset is relative to this

window offset).

VTP_PAYLOAD_EN <en1> <en2> <en3> <en4> <en5> <en6> <en7> <en8>

<en9> <en10> <en11> <en12> <en13> <en14> <en15><en16>

<en1> to <en16> can be 0 or 1. 0 indicates the VXS payload card is disabled, 1 indicates the VXS payload

card is enabled. These payloads are the FADC payload trigger enable/disable flags and must be setup

according to the used FADC slots used in the trigger. The following table shows the map of the payload

number to VME slot:

VXS Payload VME Slot

1 10

2 13

3 9

4 14

5 8

6 15

7 7

8 16

9 6

10 17

11 5

12 18

13 4

14 19

15 4

16 20

VTP_FIBER_EN <en0> <en1> <en2> <en3>

<en0> to <en3> can be 0 or 1. 0 indicates the fiber is disabled, 1 indicates the fiber is enabled. These

parameters are set to ensure fibers between the nps-vtp crates are enabled to share border FADC hits so

clustering at crate perimeters works and also to share found cluster information so that sparsification

channel patterns work. The following table illustrates the used fiber ports:

 34

VTP_NPS_COSMIC_SCINT_DT <dt>

<dt> is the scintillator hit coincidence time. Valid values for <dt> range from 0 to 7 and units are in 4ns.

VTP_NPS_COSMIC_COLUMN_MULTMIN <mult>

<mult> is the minimum multiplicity of blocks in a single crate and calorimeter column to have a hit to

create a cosmic column trigger for that crate. Valid values for <mult> range from 1 to 8.

VTP_NPS_COSMIC_COLUMN_DT <dt>

<dt> is the column hit coincidence time. Valid values for <dt> range from 0 to 7 and units are in 4ns.

VTP_NPS_COSMIC_COLUMN_VETO_EN <en>

<en> disables (when 0) the cosmic column veto logic, and enables it when 1. Enabling this veto will reject

cosmic column triggers when there are hits in more than 1 column within a single crate.

VTP_NPS_ECALCLUSTER_CRATE_ID <id>

<id> must be set to a value of 1 to 5, matching the number in the VTP host name (the # in: nps-vtp#). This

will ensure clusters are recorded with the correct Y offset in the event data.

VTP_NPS_ECALCLUSTER_HIT_DT <dt>

<dt> is the cluster hit coincidence time with respect to seed hit. Valid values for <dt> range from 0 to 7 and

units are in +/-4ns (e.g. dt=0 means 0ns coincidence, dt=1 means +/-4ns coincidence, etc...)

VTP_NPS_ECALCLUSTER_SEED_THR <thr>

<thr> is the clustering minimum seed threshold – a channel must have a hit with this energy or greater to

initiate finding a cluster. Valid values for <thr> range from 0 to 16383. The units are arbitrary and depend

on the FADC250 channel gain conversions, which nominally target 1MeV units for this threshold.

VTP_NPS_ECALCLUSTER_NHIT_MIN <min>

<min> is the minimum number of hits a cluster must have in order to be accepted (for cluster singles, pair,

and readout). Valid values for <min> range from 1 to 9.

 35

VTP_NPS_ECALCLUSTER_CLUSTER_TRIGGER_THR <thr>

<thr> is the clustering minimum cluster energy threshold to create a singles cluster trigger. Valid values for

<thr> range from 0 to 16383. The units are arbitrary and depend on the FADC250 channel gain

conversions, which nominally target 1MeV units for this threshold.

VTP_NPS_ECALCLUSTER_CLUSTER_READOUT_THR <thr>

<thr> is the clustering minimum cluster energy threshold for sparsified readout to readout FADC channels

around clusters. Valid values for <thr> range from 0 to 16383. The units are arbitrary and depend on the

FADC250 channel gain conversions, which nominally target 1MeV units for this threshold.

VTP_NPS_ECALCLUSTER_CLUSTER_PAIR_TRIGGER_THR <thr>

<thr> is the clustering minimum cluster energy threshold to create a pair1 or pair2 trigger (this threshold

applies to individual clusters in the pair). Valid values for <thr> range from 0 to 16383. The units are

arbitrary and depend on the FADC250 channel gain conversions, which nominally target 1MeV units for

this threshold.

VTP_NPS_ECALCLUSTER_CLUSTER_PAIR_TRIGGER_WIDTH <width>

<width> is the cluster pair time coincidence window that is used for the cluster pair trigger for cluster

found in the same crate. Valid values range from 0 to 124 and units are in 1ns.

VTP_NPS_FADCMASK_MODE <mode>

When <mode>=0 the sparsification logic reads out 5x5 FADC channel patterns. When <mode>=1 the

sparisifcation logic reads out 7x7 FADC channel patterns.

VTP_NPS_FADCMASK_PRESCALE <prescale>

This prescale value can be set to occasionally readout all channels when sparisification mode is enabled. It

provides a way to have a small fraction of events having all waveforms for potentially useful/special

analysis that sparisfication mode may complicate. When <prescale> is 0, sparsification is disabled and all

events have all FADC channels readout. When <prescale> is between 1 and 65534, every <prescale>+1

event will have all FADC channels readout. When <prescale> = 65535 then sparsification is enabled for all

events.

VTP_NPS_FADCMASK_WIDTH <width>

Sparsification cluster hit <width> that defines how long clusters persist in sparisification detection logic

once found. Valid range is 0 to 8188 and units are in nanoseconds. This width is the time the sparsification

logic looks before and up to the the VTP_NPS_FADCMASK_OFFSET point in the readout window.

VTP_NPS_FADCMASK_OFFSET <offset>

Sparsification cluster hit <offset> that defines the time the sparisification detection logic once looks in the

VTP readout window for clusters to determine FADC readout masks. Valid range is 0 to 8188 and units are

in nanoseconds. The parameter is relative to the VTP_W_OFFSET parameter: this is intentional to simplify

the timing - looking at the VTP cluster event data the time of cluster in the window

VTP_NPS_TRIG_DELAY <trgbit> <delay>

<trgbit> selects the trigger bit number, 0 to 31 that the <delay> will apply to. <delay> is the amount of

delay to add to the trigger bit in nanoseconds. Valid values are 0 to 1020.

VTP_NPS_TRIG_PRESCALE <trgbit> <prescale>

<trgbit> selects the trigger bit number, 0 to 31 that the <prescale> will apply to. <prescale> is the amount

to prescale the trigger bit outputs. 0 will disable the trigger bit output. 1 will enable the trigger bit output

with no prescale. Values 2 to 65535 will prescale the output by that amount (e.g. <prescale>=2 will pulse

the trigger output every other trigger...<prescale>=3 will pulse the trigger output every two triggers, etc.)

VTP_NPS_TRIG_LATENCY <latency>

 36

<latency> is the VTP trigger latency in nanosecond units (this is roughly the amount of time from when a

signal goes into the FADC to when the VTP will generate a trigger puse for cosmic, clusters, VLD, etc).

Valid range is 0 to 8188, but some settings dictate the minimum acceptable value: for NPS it is around

2300ns minimum required for this parameter).

VTP_NPS_TRIG_WIDTH <width>

<width> is the VTP trigger output pulse width generated each time a trigger condition is satisfied. Units are

in nanosecond. Valid range is 0 to 1020, actual pulse width will be this value +4ns.

9.9 Latencies

Some notes on general latencies expected through the trigger system:

A->B: ~400ns (FADC pulse to VTP Serdes RX output)

A->B->C: ~1700ns (FADC pulse to VTP from adjacent crate, to VTP over fiber Serdes RX)

A->B->C->D: ~2300ns (FADC pulse to VTP trigger output)

A->B->C->D: ~2330ns (FADC pulse to V1495 trigger output)

Most delays in the trigger processing is moving data around over serial links (VXS backplanes and fibers). A small

amount is needed by the FADC to perform the “NSA” section of the pulse integration (time is roughly the amount of

time defined by the NSA integration parameter). THe VTP clustering takes no more than a few hundred

nanoseconds. The resulting latency ~2300ns requires the parameter VTP_NPS_TRIG_LATENCY be at least a

little larger to ensure the trigger operates with a fixed latency.

9.10 Verification

The NPS trigger was verified through few ways, mainly: (1) FPGA logic simulator and (2) C/C++ logic emulator

comparing VTP event builder data to reconstructed FADC data.

(1) FPGA logic simulation

This simulation compiles and simulates the FPGA code for the TI, FADC250, VTP, and V1495 modules

that are all used in the real setup. The simulation runs the full system (5 crates, 1080 FADC channels) and

consists of walking FADC hits across all possible cluster positions to ensure 3x3 clustering tests the FADC

to calorimeter map and cluster across crate perimeters work. The simulation reads out the FADC event data

and also the VTP event data to cross checking between them can be done. This includes testing of the

sparisifcation logic mode to ensure FADC channels that don’t paricipate in a cluster are not read while

FADC channels that are near clusters over cluster readout thresholds are readout.

This simulator is extremely slow, taking about 1 hour of runtime to configure (a lot of VME emulation

accesses to setup the FADCs and VTPs) and start to issue triggers. Once configuration is complete triggers

and event readout can run at around 1 readout event every few minutes. Usually smaller scales of the setup

were used to debug in much shorter time frames, then overnight simulation where run to check the full

setup. This simulator is very accurate and very often reproduces problems found in real setups making it

extremely valuable. It can also read EVIO files from CODA to process events to check the trigger logic on

them.

The simulation software is Aldec Riviera and simulates using VHDL, Verilog, C, and C++ source codes.

 37

(2) C/C++ Logic Emulator

This is simple C/C++ application that emulates the trigger logic. It reads EVIO files and processes the

FADC data to reconstruct the trigger logic. It also reads the VTP event data which has the trigger logic

responses (trigger bits, times, and clusters). FADC reconstructed plots and be compared against the VTP

plots directly as well as the cluster and trigger bits for all individual events. The accuracy is extremely good

as shown here where all FADC reconstructed trigger clusters are compared to the VTP reported clusters as

a function of time in the readout window:

The blue line indicates where the is a match between the FADC reconstructed cluster and the VTP

event data (X,Y, energy, time and number of hits in cluster). The timing peak around 150ns is the physics

timed peak. The rest is background clusters. The red line indicates disagreements at the point in time

between the FADC and VTP (i.e. a match is not found due to bad X, Y, time, energy, or number of hits).

The reason for the disagreement at the window edges is because the FADC data has raw pulses that must be

integrated to determine their energy, but the windows cause the integration to be clipped so some energy or

hits are lost. The VTP doesn’t suffer these windowing effects because it has no windowing effects when it

is building clusters. The discrepancy at the window edges is expected and the agreement in center of the

window is excellent demonstrating the C/C++ emulator is very accurate to the FPGA simulation. This

means the emulator can be used to process data much faster (typically 1kHz or faster of event rate

processing) to check for problems and debug a variety of issues (looking problems other than firmware

issues that can cause physics trigger efficiency issues).

Many other plots are available as well. For example the number of clusters found in FADC data vs VTP

data shows similar results, but the VTP has a larger readout window (and doesn’t suffer window clipping)

so it reports more clusters:

Cluster energy plots comparing FADC to VTP (again, VTP has no window clipping issues, but FADC does

– so the FADC has an shoulder to the left that the VTP doesn’t - otherwise, very similar):

 38

Cluster time comparision:

When adding a time-cut on the to not compare FADC vs VTP near the readout window, the following

result is found for matching clusters across the different calorimeter positions:

 39

10. Z7 FPGA Peripheral Register Descriptions

10.1 PER_ID_TI

Register: LINK_RESET

Address Offset: 0x0000

Size: 32bits

Reset State: 0x0000000F
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - FIFORST RXFIFORST - RXRESET

FIFORST (RW):

'1' - TI & V7 event builder buffers reset

'0' - TI & V7 event builder buffers active

RXFIFORST (RW):

'1' - TI link receiving command FIFO reset

'0' - TI link receiving command FIFO active

RXRESET (RW):

'1' - TI link RX reset

'0' - TI link RX active

Notes:

For initial board configuration or when input clock changes:

1. Assert all reset bits

2. Wait until GCLK reference has been selected and stable (i.e. setup Si5341)

3. Release RX_RESET and confirm TI link is working (by checking bit RX_READY in LinkStatus)

4. Release RXFIFORST

Before triggers are allowed to be released:

1. Assert FIFORST to clear event builder buffers, then de-assert

2. Enable triggers

 40

Register: TI_CTRL_REG

Address Offset: 0x0004

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - MODE - - SEND_ACK SEND_BL_REQ

MODE (RW):

'1' - FPGA ROC TI event readout mode

'0' - ARM CPU ROC (DMA/Single cycle) TI event readout mode

SEND_ACK (WO):

'1' - Send block acknowledgement to TI

'0' - does nothing

SEND_BL_REQ (WO):

'1' - Send block level request to TI

'0' - does nothing

Register: LINK_STATUS_REG

Address Offset: 0x0008

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - RX_LOCKED RX_READY
15 14 13 12 11 10 9 8

RX_ERROR_CNT
7 6 5 4 3 2 1 0

RX_ERROR_CNT

RX_LOCKED (RW):

'1' - TI link is locked to bit stream

'0' - TI link is not locked to bit stream

RX_READY (RO):

'1' - TI link is up

'0' - TI link is down

RX_ERROR_CNT (RO):

Number of bit errors (8b10b invalid codes or disparity errors) seen on TI link. A non-zero value

indicates a problem.

Register: TI_STATUS_REG

Address Offset: 0x000C

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -
15 14 13 12 11 10 9 8

 41

NEXT_BL_DATA
7 6 5 4 3 2 1 0

CUR_BL_DATA

NEXT_BL_DATA (RO):

TI broadcasted next block level

CUR_BL_DATA (RO):

TI broadcasted current block level

 42

Register: EB_STATUS_REG

Address Offset: 0x0014

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

EB_FIFO_SYNC EB_FIFO_CNT_DATA

23 22 21 20 19 18 17 16

EB_FIFO_CNT_DATA - EB_FIFO_END

15 14 13 12 11 10 9 8

EB_FIFO_CNT_LEN

7 6 5 4 3 2 1 0

EB_FIFO_CNT_LEN - - EB_FIFO_EMPTY_LEN - - EB_FIFO_EMPTY

EB_FIFO_SYNC (RO):

'1' - Current TI block is a sync-event

'0' - Current TI block is not a sync-event

EB_FIFO_CNT_DATA (RO):

Number of words in block data FIFO

EB_FIFO_END (RO):

‘1’ - dummy word, indicating the end of a data block

EB_FIFO_CNT_LEN (RO):

Number of words in block length FIFO (this also represent number of blocks in FIFO)

EB_FIFO_EMPTY_LEN (RO):

'1’ - TI block length FIFO empty

'0’ - TI block length FIFO not empty

EB_FIFO_EMPTY (RO):

'1’ - TI block data FIFO empty

'0’ - TI block data FIFO not empty

 43

Register: EB_TI_FIFO_REG

Address Offset: 0x0018

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

EB_FIFO_DOUT
23 22 21 20 19 18 17 16

EB_FIFO_DOUT
15 14 13 12 11 10 9 8

EB_FIFO_DOUT
7 6 5 4 3 2 1 0

EB_FIFO_DOUT

EB_FIFO_DOUT (RO):

Read this register for single cycle TI block readout. Status of FIFO should be known before

reading this register to ensure data is present and ready for read.

Register: EB_TI_FIFO_REG

Address Offset: 0x0024

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

EB_FIFO_DOUT_LEN
23 22 21 20 19 18 17 16

EB_FIFO_DOUT _LEN
15 14 13 12 11 10 9 8

EB_FIFO_DOUT _LEN
7 6 5 4 3 2 1 0

EB_FIFO_DOUT _LEN

EB_FIFO_DOUT_LEN (RO):

Read this register for single cycle TI block readout to determine the block length for the next

block of data (alternatively the data FIFO may be read until the status indicates the end of block).

Status of FIFO should be known before reading this register to ensure data is present and ready for

read.

 44

9.2 PER_ID_CLK

Register: CTRL_REG

Address Offset: 0x0000

Size: 32bits

Reset State: 0x00000007
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - IDELAYCTRL_RESET CLK_40GBE_RESET GCLK_RESET

GCLK_RESET (RW):

'1' - Resets global reference clocks used to generate TI link references

'0' - Releases reset

GCLK_40GBE_RESET (RW):

'1' - Resets reference clock used by 40/10Gbps Ethernet MAC/Phy

'0' - Releases reset

IDELAYCTRL_RESET (RW):

'1' - Resets programmable delay reference module used by TI link and ebiorx buses

'0' - Releases reset

Register: STATUS_REG

Address Offset: 0x0004

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - IDELAYCTRL_RDY PLL_LOCKED GCLK_LOCKED

GCLK_LOCKED (RO):

'1' - Global reference clocks PLL is locked

'0' - Global reference clocks PLL is not locked

PLL_LOCKED (RO):

'1' - 40/10Gbps Ethernet MAC/Phy PLL locked

'0' - 40/10Gbps Ethernet MAC/Phy PLL not locked

IDELAYCTRL_RDY (RO):

'1' - Programmable delay reference module ready

'0' - Programmable delay reference module not ready

Register: VERSION_REG

Address Offset: 0x0008

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

VERSION_MAJOR

 45

23 22 21 20 19 18 17 16

VERSION_MAJOR

15 14 13 12 11 10 9 8

VERSION_MINOR

7 6 5 4 3 2 1 0

VERSION_MINOR

VERSION_MAJOR (RO):

Firmware major version number

VERSION_MINOR (RO):

Firmware minor version number

 46

Register: FIRMWARE_TYPE_REG

Address Offset: 0x0010

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

FIRMWARE_TYPE
23 22 21 20 19 18 17 16

FIRMWARE_TYPE
15 14 13 12 11 10 9 8

FIRMWARE_TYPE
7 6 5 4 3 2 1 0

FIRMWARE_TYPE

FIRMWARE_TYPE (RO):

1 = Zynq Streaming Firmware Type

2 = Zynq HW CODA ROC Firmware Type

Register: TIMESTAMP_REG

Address Offset: 0x0014

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

TIMESTAMP
23 22 21 20 19 18 17 16

TIMESTAMP
15 14 13 12 11 10 9 8

TIMESTAMP
7 6 5 4 3 2 1 0

TIMESTAMP

TIMESTAMP (RO):

Zynq FPGA bitstream compile timestamp

Bits 5:0 = seconds

Bits 11:6 = minute

Bits 16:12 = hour (24hr)

Bits 22:17 = year-2000

Bits 26:23 = month (Jan=0, Feb=1, …)

Bits 31:27 = day of month

 47

9.3 PER_ID_CODA_ROC

Register: CTRL_REG

Address Offset: 0x0000

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

 - - - - - - -

15 14 13 12 11 10 9 8

- - - - - CPU_EVT_ASYNC_EN CPU_EVT_SYNC_EN V7_EVT_EN
7 6 5 4 3 2 1 0

- - - - DDR_DMA_RST_N USE_DDR_BUFFERING PAUSE_EVENTS RESET

RESET (RW):

'1' - Resets HW CODA ROC

'0' - Releases reset

PAUSE_EVENTS (RW):

'1' - Will temporarily halt sending blocks of events to event builder (will always pause on block

boundaries)

'0' - Allows event block transfers to event builder

USE_DDR_BUFFER (RW):

'1' - Enables additional Zynq DDR memory to buffer multiple/many EVIO blocks

'0' - No DDR buffering used, relying on smaller buffers and TCP buffers alone

DDR_DMA_RST_N (RW):

'1' - Release reset of DDR DMA module

'0' - Reset DDR DMA module (if USE_DDR_BUFFER=0, then this DDR_DMA_RST_N should

remain 0)

V7_EVT_EN (RW):

'1' - Enables/requires V7 FPGA EVIO banks to be present & built

'0' - Disables V7 FPGA EVIO banks to event builder

CPU_EVT_SYNC_EN (RW):

'1' - Enables/requires ARM CPU “synchronous” banks to be present & built (each event)

'0' - Disables ARM CPU "synchronous” banks

CPU_EVT_ASYNC_EN (RW):

'1' - Enables ARM CPU “asynchronous” banks to be built (if async event is available the HW

CODA ROC will send it at the next available event block boundary).

'0' - Disables ARM CPU "asynchronous” banks

Register: ROC_REG

Address Offset: 0x0004

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

ROCID

 48

ROCID (RW):

VTP HW CODA ROC ID

 49

Register: ROC_STATUS

Address Offset: 0x0008

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - TCP_FULL
15 14 13 12 11 10 9 8

CODA_ROC_STATE ROC_HEADER_STATE

7 6 5 4 3 2 1 0

EVIO_HEADER_STATE TI_DATA_STATE

TCP_FULL (RO):

‘1’ - TCP engine input buffer is full (or TCP link not connected)

‘0’ - TCP engine can accept data from CODA ROC

CODA_ROC_STATE (RO):

0 – IDLE: waiting for TI event or ASYNC event

1 – GET_TI_EVT_LEN: read TI event length

2 – GET_V7_EVT_LEN: read V7 event length

3 – GET_CPU_EVT_LEN: read CPU synchronous event length

4 – WRITE_EVIO_HEADER: writing network transfer EVIO header

5 – WRITE_ROC_HEADER: writing ROC evio header

6 – WRITE_V7_EVT: writing V7 event data

7 – WRITE_CPU_EVT: writing CPU synchronous event data

8 – WRITE_CPU_ASYNC_EVT: writing CPU asynchronous event data

9 – WRITE_TI_ACK: acknowledges TI (block ACK)

ROC_HEADRER_STATE (RO):

0 – RECORD_LENGTH: writing ROC record length

1 – STATUS_ROCID: writing status/ROCID

2 – TRIGGER_BANK_LENGTH: writing trigger bank length

3 – TI_DATA: writing TI data

EVIO_HEADER_STATE (RO):

0 – CMSG_HEADER: writing CMSG type/length header

1 – BLOCK_LENGTH: writing block length & number

2– HEADER_LENGTH: writing header & length

3– RESERVED1: writing reserved1

4– RESERVED2: writing reserved2

TI_DATA_STATE (RO):

0 – BLOCK_LENGTH: writing block length & number

1 – HEADER_LENGTH: writing header & length

2 – RESERVED1: writing reserved1

3 – RESERVED2: writing reserved2

 50

Register: CPU_EVT_SYNC_DIN

Address Offset: 0x0010

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

CPU_EVT_SYNC_DIN

23 22 21 20 19 18 17 16

CPU_EVT_SYNC_DIN

15 14 13 12 11 10 9 8

CPU_EVT_SYNC_DIN

7 6 5 4 3 2 1 0

CPU_EVT_SYNC_DIN

CPU_EVT_SYNC_DIN (WO):

Write this register to fill the CPU synchronous event data. The CPU_EVT_LEN_SYNC_DIN

register must also be written to signal that HW CODA ROC that data is ready. This FIFO can only

hold 512 words so care must be taken not to overflow the buffer. If acceptable to write a larger

event size than this buffer – this can be done by writing the full event length to the

CPU_EVT_LEN_SYNC_DIN register and then continue checking the FIFO status,

CPU_EVT_SYNC_STATUS_REG, and when not full writing a single 32bit word.

Register: CPU_EVT_SYNC_STATUS_REG

Address Offset: 0x0014

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

CPU_EVT_SYNCFULL - - - - - - -

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

- - - - - - CPU_EVT_SYNC_WRLEN

7 6 5 4 3 2 1 0

CPU_EVT_SYNC_WRLEN

CPU_EVT_SYNCFULL (RO):

'1' - CPU synchronous event FIFO is full

'0' - CPU synchronous event FIFO is not full

CPU_EVT_SYNC_WRLEN (RO):

Number of words in FIFO. Can be used to check how much free space is available in buffer if full

size is known (512 words)

Register: CPU_EVT_LEN_SYNC_DIN

Address Offset: 0x0018

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

CPU_EVT_LEN_SYNC_DIN

23 22 21 20 19 18 17 16

CPU_EVT_LEN_SYNC_DIN

15 14 13 12 11 10 9 8

CPU_EVT_LEN_SYNC_DIN

7 6 5 4 3 2 1 0

CPU_EVT_LEN_SYNC_DIN

CPU_EVT_LEN_SYNC_DIN (WO):

Write this register to fill the CPU synchronous event data length (0 is an acceptable length). A

single write per block of data is required when CPU synchronous event is enabled. There must be

a matching number of written words to the CPU_EVT_SYNC_DIN register – writing the data or

length first doesn’t matter.

 51

 52

Register: CPU_EVT_LEN_SYNC_STATUS_REG

Address Offset: 0x001C

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

CPU_EVT_LEN_SYNCFULL - - - - - CPU_EVT_ OUTSTANDING

23 22 21 20 19 18 17 16

CPU_EVT_OUTSTANDING

15 14 13 12 11 10 9 8

- - - - - - CPU_EVT_LEN_SYNC_WRLEN

7 6 5 4 3 2 1 0

CPU_EVT_LEN_SYNC_WRLEN

CPU_EVT_LEN_SYNCFULL (RO):

'1' - CPU synchronous event length FIFO is full

'0' - CPU synchronous event length FIFO is not full

CPU_EVT_ LEN_ SYNC_WRLEN (RO):

Number of words in FIFO. Can be used to check how much free space is available in buffer if full

size is known (512 words)

CPU_EVT_OUTSTANDING (RO):

Number of outstanding unwritten CPU SYNCHRONOUS events that must be written to allow

hardware CODA ROC to fully build event blocks. This counter is incremented for each block of

events received from the TI, and decremented when the CPU_EVT_LEN_SYNC FIFO is written.

Register: CPU_EVT_ASYNC_DIN

Address Offset: 0x0020

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

CPU_EVT_ASYNC_DIN

23 22 21 20 19 18 17 16

CPU_EVT_ASYNC_DIN

15 14 13 12 11 10 9 8

CPU_EVT_ASYNC_DIN

7 6 5 4 3 2 1 0

CPU_EVT_ASYNC_DIN

CPU_EVT_ASYNC_DIN (WO):

Write this register to fill the CPU asynchronous event data. The CPU_EVT_LEN_ASYNC_DIN

register must also be written to signal that HW CODA ROC that data is ready. This FIFO can only

hold 512 words so care must be taken not to overflow the buffer. If acceptable to write a larger

event size than this buffer – this can be done by writing the full event length to the

CPU_EVT_LEN_ASYNC_DIN register and then continue checking the FIFO status,

CPU_EVT_ASYNC_STATUS_REG, and when not full writing a single 32bit word.

 53

Register: CPU_EVT_ASYNC_STATUS_REG

Address Offset: 0x0024

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

CPU_EVT_ASYNCFULL - - - - - - -

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

- - - - - - CPU_EVT_ASYNC_WRLEN

7 6 5 4 3 2 1 0

CPU_EVT_ASYNC_WRLEN

CPU_EVT_ASYNCFULL (RO):

'1' - CPU asynchronous event FIFO is full

'0' - CPU asynchronous event FIFO is not full

CPU_EVT_ASYNC_WRLEN (RO):

Number of words in FIFO. Can be used to check how much free space is available in buffer if full

size is known (512 words)

Register: CPU_EVT_LEN_ASYNC_DIN

Address Offset: 0x0028

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

CPU_EVT_LEN_ASYNC_DIN

23 22 21 20 19 18 17 16

CPU_EVT_LEN_ASYNC_DIN

15 14 13 12 11 10 9 8

CPU_EVT_LEN_ASYNC_DIN

7 6 5 4 3 2 1 0

CPU_EVT_LEN_ASYNC_DIN

CPU_EVT_LEN_ASYNC_DIN (WO):

Write this register to fill the CPU asynchronous event data length (>0). There must be a matching

number of written words to the CPU_EVT_ASYNC_DIN register. Writing the length register will

signal the HW CODA ROC that an asynchronous event is to be presented at the next opportunity.

Register: CPU_EVT_LEN_ASYNC_STATUS_REG

Address Offset: 0x002C

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

CPU_EVT_LEN_ASYNCFULL - - - - - - -

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

- - - - - - CPU_EVT_LEN_ASYNC_WRLEN

7 6 5 4 3 2 1 0

CPU_EVT_LEN_ASYNC_WRLEN

CPU_EVT_LEN_ASYNCFULL (RO):

'1' - CPU asynchronous event length FIFO is full

'0' - CPU asynchronous event length FIFO is not full

CPU_EVT_ LEN_ ASYNC_WRLEN (RO):

Number of words in FIFO. Can be used to check how much free space is available in buffer if full

size is known (512 words)

 54

Register: TI_STATUS_TRIG_NUMBER

Address Offset: 0x0040

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

TRIG_NUMBER

23 22 21 20 19 18 17 16

TRIG_NUMBER

15 14 13 12 11 10 9 8

TRIG_NUMBER

7 6 5 4 3 2 1 0

TRIG_NUMBER

TRIG_NUMBER (RO):

32bit trigger number from the last processed TI event. This value is initialized to 0 when

CTRL_REG->RESET is asserted.

Register: TI_ACK_COUNT

Address Offset: 0x004C

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

ACK_COUNT

23 22 21 20 19 18 17 16

ACK_COUNT

15 14 13 12 11 10 9 8

ACK_COUNT

7 6 5 4 3 2 1 0

ACK_COUNT

ACK_COUNT (RO):

32bit trigger number of all VTP->TI readout ACK sent. This value is initialized to 0 when

CTRL_REG->RESET is asserted.

 55

Register: BYTES_SENT0

Address Offset: 0x0044

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

BYTES_SENT(31:24)

23 22 21 20 19 18 17 16

BYTES_SENT(23:16)

15 14 13 12 11 10 9 8

BYTES_SENT(15:8)

7 6 5 4 3 2 1 0

BYTES_SENT(7:0)

BYTES_SENT (RO):

Number of bytes transmitted to CODA EB through the ethernet port.

This value is reset by the CODA_ROC_PER CTRL_REG->RESET

Reading this value latches the upper 32bit value in BYTE_SENT1 so that when BYTES_SENT0,

then BYTES_SENT1 are read sequentially a coherent 64bit read is done.

Register: BYTES_SENT1

Address Offset: 0x0048

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

BYTES_SENT(63:56)

23 22 21 20 19 18 17 16

BYTES_SENT(55:48)

15 14 13 12 11 10 9 8

BYTES_SENT(47:40)

7 6 5 4 3 2 1 0

BYTES_SENT(39:32)

BYTES_SENT (RO):

Number of bytes transmitted to CODA EB through the ethernet port.

This value is reset by the CODA_ROC_PER CTRL_REG->RESET

 56

Register: ROC_MAX_BLOCK_SIZE

Address Offset: 0x0070

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

ROC_MAX_BLOCK_SIZE

23 22 21 20 19 18 17 16

ROC_MAX_BLOCK_SIZE

15 14 13 12 11 10 9 8

ROC_MAX_BLOCK_SIZE

7 6 5 4 3 2 1 0

ROC_MAX_BLOCK_SIZE

ROC_MAX_BLOCK_SIZE (RW):

Maximum EVIO block size in 32bit units (typically 1M 32bit words ~4MBytes) used to

predict/calculate when the DDR buffer is full and when to wrap around address pointers. This

must be set before the DDR DMA component reset is released (bit 3 of CTRL_REG). This is also

used as the EVIO network block size threshold/limit, which forces the data block to be built/sent

before exceeding this threshold.

Register: ROC_MAX_BLOCKS

Address Offset: 0x0074

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - ROC_MAX_BLOCKS

7 6 5 4 3 2 1 0

ROC_MAX_BLOCKS

ROC_MAX_BLOCKS (RW):

This is used a the EVIO network block threshold. Once this number of event blocks in reached in

the current EVIO network block being built it will force it to be sent.

Register: ROC_BLOCKTIMEOUT

Address Offset: 0x0078

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

ROC_BLOCKTIMEOUT

23 22 21 20 19 18 17 16

ROC_BLOCKTIMEOUT

15 14 13 12 11 10 9 8

ROC_BLOCKTIMEOUT

7 6 5 4 3 2 1 0

ROC_BLOCKTIMEOUT

ROC_BLOCKTIMEOUT (RW):

This is used a the EVIO network block timeout threshold. If no event blocks have been added to

the active EVIO network block after the specified timeout it will force the block to be sent. The

units of this timer are 12.8ns, providing a maximum timeout of ~1 minute.

 57

9.4 PER_ID_10GBE_TCPIP_CLIENT0

Register: CTRL_REG

Address Offset: 0x0000

Size: 32bits

Reset State: 0x0000C025
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - FIBER_CTRL_LIN

KSTATUS

DYNAMIC_

IPv4

15 14 13 12 11 10 9 8

RESET_ST

ACK
RESET_

MAC
FIBER_CTRL_L

PMODE
FIBER_CTRL_

RESETL

FIBER_CTRL_M

ODSELL
TX_FAU

LT

SIGNAL_DETECT PMA_PMD_

TYPE

7 6 5 4 3 2 1 0

PMA_PMD_TYPE

PHY_POWER_D
OWN

PHY_TEST_MODE PHY_RE
SET

PHY_CONFIG_CH
ANGE

-

PHY_CONFIG_CHANGE (RW):

Optional: pulse 1 to activate settings on PHY_TEST_MODE

PHY_RESET (RW):

'1' - Reset ethernet phy layer

'0' - Release reset

PHY_TEST_MODE (RW):

0 – normal mode

1 – loopback mode

2 – remote loopback mode

PHY_POWER_DOWN (RW):

'1' - Power=off ethernet phy

'0' - Power=on ethernet phy

PMA_PMD_TYPE (RW):

Specify the type of SFP+ transceiver installed:

7 – 10GBASE-SR

6 – 10GBASE-LR

5 – 10GBASE-ER

SIGNAL_DETECT (RW):

'1' - SFP+ signal detected (controlled by software – later to be moved to firmware)

'0' - SFP+ signal not detected

TX_FAULT (RW):

'1' - SFP+ tx fault detected (controlled by software – later to be moved to firmware)

'0' - SFP+ tx fault not detected

FIBER_CTRL_MODSEL (RW):

'1' - SFP+ I2C bus not selected

'0' - SFP+ I2C bus selected

FIBER_CTRL_RESETL (RW):

'1' - SFP+ not reset

'0' - SFP+ reset

FIBER_CTRL_LPMODE (RW):

'1' - SFP+ low power mode enabled

 58

'0' - SFP+ low power mode disabled

RESET_MAC (RW):

'1' - Reset ethernet MAC layer

'0' - Release reset

RESET_STACK (RW):

'1' - Reset TCP/IP stack

'0' - Release reset

DYNAMIC_IPv4 (RW):

'1' - use DHCP

'0' - fixed IP

FIBER_CTRL_LINKSTATUS (RW):

'1' - SFP+ link light enabled

'0' - SFP+ link light disabled

Register: STATUS_REG

Address Offset: 0x0004

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

 TCP_TX_CTS0 FIBER_CTRL_MOD_PRSL - FIBER_CTRL_INTL

FIBER_CTRL_INTL (RO):

'0’ - SFP+ interrupt active

'1’ - SFP+ interrupt not active

FIBER_CTRL_MOD_PRSL (RO):

'0’ - SFP+ module is present

'1’ - SFP+ module is not present

TCP_TX_CTS0 (RO):

'1’ - TCP socket 0 clear to send (debugging signal)

'0’ - TCP socket 0 not clear to send (debugging signal)

Register: IP4_ADDR_REG

Address Offset: 0x0010

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

IP4_ADDR

23 22 21 20 19 18 17 16

IP4_ADDR

15 14 13 12 11 10 9 8

IP4_ADDR

7 6 5 4 3 2 1 0

IP4_ADDR

IP4_ADDR (RW):

 59

IPv4 address for static IP mode

Register: IP4_MCASTADDR_REG

Address Offset: 0x0014

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

IP4_MCASTADDR

23 22 21 20 19 18 17 16

IP4_MCASTADDR

15 14 13 12 11 10 9 8

IP4_MCASTADDR

7 6 5 4 3 2 1 0

IP4_MCASTADDR

IP4_MCASTADDR (RW):

IPv4 multicast address

Register: IP4_SUBNETMASK_REG

Address Offset: 0x0018

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

IP4_SUBNETMASK

23 22 21 20 19 18 17 16

IP4_SUBNETMASK

15 14 13 12 11 10 9 8

IP4_SUBNETMASK

7 6 5 4 3 2 1 0

IP4_SUBNETMASK

IP4_SUBNETMASK (RW):

IPv4 subnet mask

Register: IP4_GATEWAYADDR_REG

Address Offset: 0x001C

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

IP4_GATEWAYADDR

23 22 21 20 19 18 17 16

IP4_GATEWAYADDR

15 14 13 12 11 10 9 8

IP4_GATEWAYADDR

7 6 5 4 3 2 1 0

IP4_GATEWAYADDR

IP4_GATEWAYADDR (RW):

IPv4 gateway address

Register: TCP_STATE_REQUESTED_REG

Address Offset: 0x0020

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

 60

- - - - - - - TCP_STATE_REQUESTED

TCP_STATE_REQUESTED (RW):

'0’ - go back to idle (terminate connection is currently connected or connecting)

‘1’ - initiate connection

Register: TCP_KEEPALIVE_REG

Address Offset: 0x0028

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - TCP_KEEPALIVE_EN

TCP_KEEPALIVE_EN (RW):

'0’ - disable TCP keep alive

‘1’ - enable TCP keep alive

Register: TCP_STATE_STATUS_REG

Address Offset: 0x002C

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - TCP_STATE_STATUS

TCP_STATE_STATUS (RW):

0 – connection closed

1 – connecting

2 – connected

3 – unreachable IP

4 – destination port busy

Register: TCP_STATUS_REG

Address Offset: 0x0030

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - TCP_CONNECTED_FLAG

TCP_CONNECTED_FLAG (RW):

‘0’ – not connected

‘1’ – connected

 61

Register: MAC_ADDR0_REG

Address Offset: 0x0034

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

MAC_ADDR[31..24]

23 22 21 20 19 18 17 16

MAC_ADDR[23..16]

15 14 13 12 11 10 9 8

MAC_ADDR[15..8]

7 6 5 4 3 2 1 0

MAC_ADDR[7..0]

MAC_ADDR (RW):

Lower 32bits of 10Gbps MAC address

Register: MAC_ADDR1_REG

Address Offset: 0x0038

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

MAC_ADDR[47..40]

7 6 5 4 3 2 1 0

MAC_ADDR[39..32]

MAC_ADDR (RW):

Upper 16bits of 10Gbps MAC address

Register: MAC_STATUS0_REG

Address Offset: 0x003C

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

MAC_N_RX_FRAMES

23 22 21 20 19 18 17 16

MAC_N_RX_FRAMES

15 14 13 12 11 10 9 8

MAC_N_TX_FRAMES

7 6 5 4 3 2 1 0

MAC_N_TX_FRAMES

MAC_N_TX_FRAMES (RO):

Number of transmitted MAC frames

MAC_N_RX_FRAMES (RO):

Number of received MAC frames

Register: MAC_STATUS1_REG

Address Offset: 0x0040

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

MAC_N_RX_FRAMES_TOO_SHORT

23 22 21 20 19 18 17 16

MAC_N_RX_FRAMES_TOO_SHORT

15 14 13 12 11 10 9 8

 62

MAC_N_RX_BAD_CRCS

7 6 5 4 3 2 1 0

MAC_N_RX_BAD_CRCS

MAC_N_RX_BAD_CRCS (RO):

Number of received MAC frames with invalid CRC

MAC_N_RX_FRAMES_TOO_SHORT (RO):

Number of received MAC frames under valid length

Register: MAC_STATUS2_REG

Address Offset: 0x0044

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

MAC_N_RX_FRAMES_WRONG_ADDR

23 22 21 20 19 18 17 16

MAC_N_RX_FRAMES_WRONG_ADDR

15 14 13 12 11 10 9 8

MAC_N_RX_TOO_LONG

7 6 5 4 3 2 1 0

MAC_N_RX_TOO_LONG

MAC_N_RX_FRAMES_WRONG_ADDR (RO):

Number of received MAC frames with MAC address not matching local host

MAC_N_RX_FRAMES_TOO_LONG (RO):

Number of received MAC frames over valid length

Register: MAC_STATUS3_REG

Address Offset: 0x0048

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

MAC_RX_IPG
23 22 21 20 19 18 17 16

MAC_RX_IPG
15 14 13 12 11 10 9 8

MAC_N_RX_LENGTH_ERRORS

7 6 5 4 3 2 1 0

MAC_N_RX_LENGTH_ERRORS

MAC_N_RX_LENGTH_ERRORS (RO):

Number of received MAC frames with length field != to received frame length

MAC_RX_IPG (RO):

Measured interpacket gap (in bytes)

Register: PCS_STATUS_REG

Address Offset: 0x0050

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - TX_DISABLE

 63

7 6 5 4 3 2 1 0

PCS_CORE_STATUS

PCS_CORE_STATUS (RO):

Bit0 – PCS block is locked

Bit7:1 - reserved

TX_DISABLE (RO):

Tx disable request from PCS core (move to firmware later)

Register: PHY_STATUS_REG

Address Offset: 0x0060

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

PHY_STATUS2

23 22 21 20 19 18 17 16

PHY_STATUS
15 14 13 12 11 10 9 8

PHY_ID

7 6 5 4 3 2 1 0

PHY_ID

PHY_ID (RO):

Phy chip ID

PHY_STATUS (RO):

XAUI status (not used)

PHY_STATUS2 (RO):

SFP+ status from phy

Register: UDP_DEST_IP_ADDR_REG

Address Offset: 0x0064

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

UDP_DEST_IP_ADDR[31:24]
23 22 21 20 19 18 17 16

UDP_DEST_IP_ADDR[23:16]

15 14 13 12 11 10 9 8

UDP_DEST_IP_ADDR[15:8]
7 6 5 4 3 2 1 0

UDP_DEST_IP_ADDR[7:0]

UDP_DEST_IP_ADDR (RW):

Destination/server IP address for UDP connection

Register: UDP_PORT_REG

Address Offset: 0x0064

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

UDP_LOCAL_PORT[15..8]

23 22 21 20 19 18 17 16

UDP _LOCAL_PORT[7..0]

15 14 13 12 11 10 9 8

 64

UDP _DEST_PORT[15..8]

7 6 5 4 3 2 1 0

UDP _DEST_PORT[7..0]

UDP_DEST_PORT (RW):

UDP destination port (on remote/target server)

UDP_LOCAL_PORT (RW):

UDP local port to use

Register: TCP_DEST_IP_ADDR_REG

Address Offset: 0x0080

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

TCP_DEST_IP_ADDR[31:24]
23 22 21 20 19 18 17 16

TCP_DEST_IP_ADDR[23:16]

15 14 13 12 11 10 9 8

TCP_DEST_IP_ADDR[15:8]

7 6 5 4 3 2 1 0

TCP_DEST_IP_ADDR[7:0]

TCP_DEST_IP_ADDR (RW):

Destination/server IP address for TCP connection

Register: TCP_PORT_REG

Address Offset: 0x00A0

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

TCP_LOCAL_PORT[15..8]

23 22 21 20 19 18 17 16

TCP_LOCAL_PORT[7..0]

15 14 13 12 11 10 9 8

TCP_DEST_PORT[15..8]

7 6 5 4 3 2 1 0

TCP_DEST_PORT[7..0]

TCP_DEST_PORT (RW):

TCP destination port (on remote/target server)

TCP_LOCAL_PORT (RW):

TCP local port to use

 65

9.5 PER_ID_EBIORX0

Register: CTRL_REG

Address Offset: 0x0000

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -
7 6 5 4 3 2 1 0

FIFO_R

ST
RX_DATA_ENA

BLE

ENABLE_MONI

TOR
ENABLE_PHASE_DETE

CTOR
DCD_CORR

ECT
BITSL

IP
SYNC_ERROR_R

ESET
RESE

T

RESET (RW):

'1’ - reset receiver/state machine

‘0’ - run receiver/state machine

SYNC_ERROR_RESET (RW):

Reset sync error counter (used in link alignment/verification)

BITSLIP (WO):

Write ‘1’ to pulse/bitstip the deserializers (used in link alignment/verification)

DCD_CORRECT (RW):

Should be left ‘0’

ENABLE_PHASE_DETECTOR (RW):

Should be left ‘1’

RX_DATA_ENABLE (RW):

'0’ - ignores received data words

‘1’ - accepted received data words

FIFO_RST (RW):

'0’ - RX FIFO reset released

‘1’ - RX FIFO reset asserted

Register: STATUS_REG

Address Offset: 0x0004

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

SYNC_ERROR_CNT

23 22 21 20 19 18 17 16

SYNC_ERROR_CNT

15 14 13 12 11 10 9 8

- - - BIT_TIME_VALUE

7 6 5 4 3 2 1 0

- - - - - - - RX_LOCKED

RX_LOCKED (RO):

'1’ - receiver locked on incoming datasteam

‘0’ - receiver not locked on incoming datasteam

BIT_TIME_VALUE (RO):

Calculated bit time

 66

SYNC_ERROR_CNT (RO):

Number of received errors

 67

10. V7 FPGA Peripheral Register Descriptions

10.1 PER_ID_MPDFIBER0..39

Register: GTX_CTRL_REG

Address Offset: 0x0000

Size: 32bits

Reset State: 0x00000007
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - POWERDOWN RESET GT_RESET

GT_RESET (RW):

'1' - Assert gigabit link hardware reset

'0' - Deassert gigabit link hardware reset

RESET (RW):

'1' - Assert serial link protocol state machines

'0' - Deassert serial link protocol state machines

POWERDOWN (RW):

'1' - Power down the gigabit hardware

'0' - Power the gigabit hardware

Register: GTX_STATUS_REG

Address Offset: 0x0010

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

FIBER_ERR_CNT

7 6 5 4 3 2 1 0

- - - - - FIBER_FRAME_ERR FIBER_HARD_ERR FIBER_CHANNEL_UP

FIBER_CHANNEL_UP (RO):

'1' - Fiber/MPD link is up

'0' - Fiber/MPD link is down

FIBER_HARD_ERR (RO):

'1' - Fiber/MPD link has an error requiring the link to be reset

'0' - Normal operation

FIBER_FRAME_ERR (RO):

'1' - Fiber link protocol framing error occurred

'0' - Normal operation

FIBER_ERR_CNT (RO):

Number of soft/disparity errors on link since last reset

 68

Register: EB_CTRL_REG

Address Offset: 0x0020

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - ENABLE_CM BUILD_DEBUG_HEADERS BUILD_ALL_SAMPLES EVT_ENABLE

EVT_ENABLE (RW):

'1' - MPD participates is enabled in the event building

'0' - MPD is ignored by event builder

BUILD_ALL_SAMPLES (RW):

'1' - Disables zero suppression so all APV samples are readout

'0' - Zero suppression is enabled and APV samples may be rejected

BUILD_DEBUG_HEADERS (RW):

'1' - Additional readout data format types are enabled, useful for debugging

'0' - Debug headers are not readout

ENABLE_CM (RW):

'1’ - Enables the common-mode suppression logic

'0’ - Disables the common-mode suppression logic

 69

Register: MAX_RX_LEN_REG

Address Offset: 0x0028

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - BUSY

BUSY (RO):

'1' - Input buffer for this MPD is full, pausing the event builder

'0' - Normal operation

Register: APV_OFFSET_REG

Address Offset: 0x0034

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

WR - - - - ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

- - - OFFSET

7 6 5 4 3 2 1 0

OFFSET

OFFSET (RW):

13bit signed offset value

ADDR (RW):

11bit address. [6:0] = APV strip. [10:7] = APV ID

APV ID = 15 (which is not supported by MPD) is used to store the common-mode min and max

thresholds. In this case:

APV strip = 0: APV ID = 0 common-mode min

APV strip = 1: APV ID = 0 common-mode max

APV strip = 2: APV ID = 1 common-mode min

APV strip = 3: APV ID = 1 common-mode max

...

APV strip = 28: APV ID = 14 common-mode min

APV strip = 29: APV ID = 14 common-mode max

WR (WO):

'1’ - write OFFSET into ADDR (this bit is automatically cleared, so another write can be issued

immediately)

‘0’ - does nothing

Register: APV_THR_REG

Address Offset: 0x0038

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

WR - - - - ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

 70

- - - - - - - THR

7 6 5 4 3 2 1 0

THR

THR(RW):

9bit unsigned threshold

ADDR (RW):

11bit address. [6:0] = APV strip. [10:7] = APV ID

WR (WO):

'1’ - write THR into ADDR (this bit is automatically cleared, so another write can be issued

immediately)

‘0’ - does nothing

10.2 PER_ID_MPDREGS

Register: DATA_REG

Address Offset: 0x0000

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

DATA (RW):

Writing this register will perform a write to the MPD fiber and address as defined by ADDR_REG

Reading this register will perform a read to the MPD fiber and address as defined by ADDR_REG

Register: ADDR_REG

Address Offset: 0x003C

Size: 32bits

Reset State: 0x00000000
31 30 29 28 27 26 25 24

- - - MPD_SEL

23 22 21 20 19 18 17 16

- - - - - ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

MPD_SEL (RW):

0 to 31 selects the active fiber to use for the register access

ADDR (RW):

19bit byte address to access on the selected MPD

 71

************ BELOW: OLD CONTENTS TO IGNORE ************

11. Readout Data Format

The word length for the readout data is 32bits. The event length is variable and depends on several factors

(detector occupancy, headers, trailers, filler words).

Data Word Categories

 Data words from the module are divided into two categories: Data Type Defining (bit 31

= 1) and Data Type Continuation (bit 31 = 0). Data Type Defining words contain a 4-bit data

type tag (bits 30 - 27) along with a type dependent data payload (bits 26 - 0). Data Type

Continuation words provide additional data payload (bits 30 – 0) for the last defined data type.

Continuation words permit data payloads to span multiple words and allow for efficient packing

of various data types spanning multiple data words. Any number of Data Type Continuation

words may follow a Data Type Defining word.

Data Type List

0 Block Header

1 Block Trailer

2 Event Header

3 Trigger Time

4 Reserved

5 Reserved

6 Trigger

7 Reserved

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Data Not Valid (empty module)

15 Filler Word (non-data)

Data Type: Block Header

Type: 0x0

Size: 1 word

Description: Indicates the beginning of a block of events. (High-speed readout of a board or a set of

boards is done in blocks of events)

31 30 29 28 27 26 25 24

1 0 0 0 0 - - -

23 22 21 20 19 18 17 16

- - NUM_EVENTS

15 14 13 12 11 10 9 8

NUM_EVENTS BLOCK_NUMBER

7 6 5 4 3 2 1 0

BLOCK_NUMBER

BLOCK_NUMBER:

Event block number (used to align blocks when building events)

NUM_EVENTS:

Number of events in block

 72

Data Type: Block Trailer

 Type: 0x1

 Size: 1 word

Description: Indicates the end of a block of events. The data words in a block are bracketed by the

block header and trailer.

31 30 29 28 27 26 25 24

1 0 0 0 1 - - -

23 22 21 20 19 18 17 16

- - NUM_WORDS

15 14 13 12 11 10 9 8

NUM_WORDS

7 6 5 4 3 2 1 0

NUM_WORDS

NUM_WORDS:

Total number of words in block of events

Data Type: Event Header

 Type: 0x2

 Size: 1 word

Description: Indicates the start of an event. The included trigger number is useful to ensure proper

alignment of event fragments when building events. The 27bit trigger number (134M

count) is not a limitation, as it will be used to distinguish events within event blocks, or

among events that are concurrently being built or transported.

31 30 29 28 27 26 25 24

1 0 0 1 0 TRIGGER_NUMBER

23 22 21 20 19 18 17 16

TRIGGER_NUMBER

15 14 13 12 11 10 9 8

TRIGGER_NUMBER

7 6 5 4 3 2 1 0

TRIGGER_NUMBER

TRIGGER_NUMBER:

Accepted event/trigger number

 73

Data Type: Trigger Time

 Type: 0x3

 Size: 2 words

Description: Time of trigger occurrence relative to the most recent global reset. The time is measured

by a 48bit counter that is clocked from the 125MHz system clock. The assertion of the

global reset clears the counter. The de-assertion of global reset enables counter and thus

sets t=0 for the module. The trigger time is necessary to ensure system synchronization

and is useful in aligning event fragments when building events.

Word 1:

 31 30 29 28 27 26 25 24

1 0 0 1 1 0 0 0

23 22 21 20 19 18 17 16

TRIGGER_TIME_H

15 14 13 12 11 10 9 8

TRIGGER_TIME_H

7 6 5 4 3 2 1 0

TRIGGER_TIME_H

TRIGGER_TIME_H:

This is the upper 24bits of the trigger time

Word 2:

 31 30 29 28 27 26 25 24

0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16

TRIGGER_TIME_L

15 14 13 12 11 10 9 8

TRIGGER_TIME_ L

7 6 5 4 3 2 1 0

TRIGGER_TIME_ L

TRIGGER_TIME_L:

This is the lower 24bits of the trigger time

 74

Data Type: Data Not Valid

 Type: 0x14

 Size: 1 word

Description: Module has no data available for readout. This can if the module is being read out too

quickly after receiving (event building is in process and no data words have been put into

the buffer yet) a trigger or if the module doesn’t have any events to report.

31 30 29 28 27 26 25 24

1 1 1 1 0 UNDEFINED

23 22 21 20 19 18 17 16

UNDEFINED

15 14 13 12 11 10 9 8

UNDEFINED

7 6 5 4 3 2 1 0

UNDEFINED

Data Type: Filler Word

 Type: 0x15

 Size: 1 word

Description: Non-data word appended to the block of events. This is used to force the total number of

32-bit words read out of a module to be a multiple of 2 or 4 when

31 30 29 28 27 26 25 24

1 1 1 1 1 UNDEFINED

23 22 21 20 19 18 17 16

UNDEFINED

15 14 13 12 11 10 9 8

UNDEFINED

7 6 5 4 3 2 1 0

UNDEFINED

 75

Additionally, the Zynq7 contains an FPGA which currently has a few FPGA based peripherals. The

Zynq7 processor and FPGA system is shown in the following diagram. The Zynq7 connects to the FPGA

based peripherals (axi_dma0, eb_axidma_wrapper_0, vtp_slave_bridge_0) using the Master AXI bus

interface (this is a 32bit data bus used for accessing control/status registers in both Zynq and V7 FPGAs).

The "eb_axidma_wrapper_0" peripheral buffers and combines event block streams from the V7 and TI

where the "axi_dma_0" peripheral takes the stream and can DMA it to the Zynq7 processor over the

S_AXI_HP0 bus (which connects to the DDR3 memory).

 FPGA Peripherals:

Register Name Description Address Offset
Event Builder peripheral VTP/TI Event Builder 0x43C00000

LinkCtrl TI<->VTP Serial Link Control 0x0000

TiCtrl TI Control 0x0004

LinkStatus TI<-> VTP Serial Link Status 0x0008

TiStatus TI Status 0x000C

EbCtrl Event Builder Control 0x0010

EB AXI DMA peripheral 0x43BF0000

V7 Bridge & FPGA Config 0x43C10000

Bridge space Memory maps a ~64kByte window of V7 into Zynq7 0x0000

V7Status V7 FPGA Configuration Status 0xFFF4

V7Ctrl V7 FPGA Control 0xFFF8

V7Cfg V7 FPGA Configuration 0xFFFC

V7 Clk peripheral 0x43C10100

Ctrl Clock control 0x0000

Status Clock status 0x0004

Sd peripheral (offset 0x0200) 0x43C10200

Ctrl Sd Control 0x0000

Status Sd Status 0x0004

ScalerLatch Scaler latch control 0x0008

FPAOSel Front Panel LVDS[31:0] Source Selection Control 0x0010

FPBOSel Front Panel Mezzanine Source Selection Control 0x0014

BusySel Busy Source Selection Control 0x0018

Trig1Sel Trig1 Source Selection Control 0x001C

 76

SyncSel Sync Source Selection Control 0x0020

FPAOVal Front Panel LVDS[31:0] Output Value 0x0040

FPBOVal Front Panel Mezzanine Output Value 0x0044

FPBIStatus Front Panel Mezzanine Input Status 0x0060

Trig1Status Trig1 Status 0x0064

Trig2Status Trig2 Status 0x0068

SyncStatus Sync Status 0x006C

 77

FadcDecoder peripheral 0x43C10300

Ctrl Fadc Enable Control 0x0000

Latency[0-15] Fadc Latency Status 0x0020

…

0x005C

VXS Serdes peripheral 0x43C11000

…

0x43C11F00

Ctrl GTH Control 0x0000

Status GTH Statusl 0x0004

DrlCtrl Drp Control 0x0008

DrpStatus Drp Status 0x000C

QSFP Serdes Peripheral 0x43C12000

…

0x43C12300

Ctrl GTH Control 0x0000

Status GTH Statusl 0x0004

DrlCtrl Drp Control 0x0008

DrpStatus Drp Status 0x000C

ECTrigger Peripheral 0x43C14100

…

0x43C14200

Ctrl EC Trigger Control 0x0000

Trigger Ouptut Peripheral 0x43C15000

Latency Trigger Latency control 0x0000

Width Trigger Width Control 0x0004

BusyScaler 0x0010

V7 Event Builder Peripheral 0x43C15100

BlockSize Event Builder Block Size 0x0000

TriggerFifoBusyThreshold Queued Trigger Busy Threshold 0x0004

Lookback Readout Window Lookback 0x0008

WindowWidth Readout Window Width 0x000C

 78

6.1 Event Builder Peripheral (Base Address 0x43C00000)

 79

6.2 AXI DMA Peripheral (Base Address 0x43BF0000)
 Refer to AXI DMA v7.1 manual (pg021_axi_dma.pdf) for details on this peripheral. It is a IP block from

Vivado and is responsible for performing DMA operations to efficiently move data from Event Builder buffers into

the Zynq7 processor memory.

For Linux driver/device-tree setup refer here:

http://www.wiki.xilinx.com/DMA+Drivers+-+Soft+IPs#AXI%20DMA--Device%20Tree%20Node

6.3 V7 Bridge & FPGA Config (Base Address 0x43C10000)
 This peripheral bridges the V7 register space into the Zynq7 processor memory space. It uses a custom

bus/protocol and is also used as the configuration interface for the V7 FPGA image. The V7 FPGA is setup as a

16bit SelectMap slave device for configuration. The last three 32bit words in the 64kB peripheral space are used for

V7 FPGA configuration control and status registers, while the remaining lower space in the 64kB peripheral space

maps registers in the V7 FPGA. This allows the Zynq7 processor to read/write registers using normal memory

reads/writes.

Register: V7Status

 Address Offset: 0xFFF4

 Size: 32bits

 Reset State: 0xXXXXXXXX

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - INIT_B DONE

INIT_B (RO):

Reads the V7 INIT_B status

'0' - indicates V7 FPGA configuration is in the reset state

DONE (RO):

Reads the V7 DONE status

'1' - indicates the V7 FPGA configuration is valid and running

'0' - indicates the V7 FPGA configuration is invalid or incomplete

 80

Register: V7Ctrl

 Address Offset: 0xFFF8

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - PROGRAM_B RDWR_B CSI_B RESET_SOFT RESET

PROGRAM_B (WO):

'0' - FPGA configuration reset

'1' - FPGA configuration can commence

RDWR_B (WO):

'1' - indicates the V7 FPGA configuration bus will perform a read on next V7Cfg access

'0' - indicates the V7 FPGA configuration bus will perform a write on next V7Cfg access

CSI_B (WO):

'1' - deselects V7 FPGA configuration

'0' - selects V7 FPGA configuration

RESET_SOFT (WO):

'1' - asserts soft reset signal to Z7 and V7 peripherals

'0' - deasserts soft reset signal to Z7 and V7 peripherals

RESET (WO):

'1' - asserts hard reset signal to Z7 and V7 peripherals

'0' - deasserts hard reset signal to Z7 and V7 peripherals

Register: V7Cfg

 Address Offset: 0xFFFC

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

CFG_DATA

7 6 5 4 3 2 1 0

CFG_DATA

CFG_DATA (RW):

Data to read/write to the V7 configuration interface

 81

6.4 V7 Clk (Base Address 0x43C10100)

Register: Ctrl

 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000001

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - GCLK_RESET

GCLK_RESET (RW):

'1' - GCLK PLL reset

'0' - GCLK PLL run

Register: Status

 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0xXXXXXXXX

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - GCLK_LOCKED

GCLK_LOCKED (RO):

'1' - GCLK PLL locked

'0' - GCLK PLL not locked

 82

6.5 Sd (Base Address 0x43C10200)

Register: Ctrl

 Address Offset: 0x0000

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - FPB_OEN FPB_SEL

FPB_OEN (RW):

Front panel mezzanine expansion board Output Enable (Inverted) control. Not all mezzanine

board types can disable their output. Refer to mezzanine board document on how this signal will

control that board type (A395D: 0=enable, 1=disable).

FPB_SEL (RW):

Front panel mezzanine expansion board signal format selection control. Not all mezzanine board

types can disable their output. Refer to mezzanine board document on how this signal will control

that board type (A395D: 0=NIM, 1=TTL).

Register: Status

 Address Offset: 0x0004

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - FPB_ID

FPB_ID (RO):

Front panel mezzanine expansion board identifier:

 0: A395A (32 x IN LVDS/ECL)

 1: A395B (32 x OUT LVDS)

 2: A395C (32 x OUT ECL)

 3: A395D (8 x IN/OUT NIM/TTL)

 83

Register: ScalerLatch

 Address Offset: 0x0008

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - LATCH

LATCH (RW):

Distributed to board scalers & histograms for global control capture of counters. Two types of

counters (buffered & unbuffered) use this signal differently. For buffered counters, the counter is

copied to the readout register on the 0>1 transition of LATCH allowing dead-timeless operation.

For unbuffered counters, the counts is halt while LATCH is 1, this allows all counters to stop for

readout, then when LATCH returns to 0 the counters can continue to count.

Register: FPAOSel

 Address Offset: 0x0010

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

SEL

23 22 21 20 19 18 17 16

SEL

15 14 13 12 11 10 9 8

SEL

7 6 5 4 3 2 1 0

SEL

SEL (RW):

Each bit in SEL corresponds to the same bit on the front panel LVDS output bus.

'1' - bit uses user programmable logic to drive LVDS bit

'0' - bit uses FPAOVal register bit to drive LVDS bit

Register: FPBOSel

 Address Offset: 0x0014

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

SEL

23 22 21 20 19 18 17 16

SEL

15 14 13 12 11 10 9 8

SEL

7 6 5 4 3 2 1 0

SEL

SEL (RW):

Each bit in SEL corresponds to the same bit on the front panel mezzanine output bus.

'1' - bit uses user programmable logic to drive mezzanine output bit

'0' - bit uses FPBOVal register bit to drive mezzanine output bit

 84

Register: BusySel

 Address Offset: 0x0018

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - SEL

SEL (RW): determines what is output on VXS BUSY signal to TI

0 - '0'

1 - '1'

2 - VTP Event Builder BUSY logic

3 - reserved

Register: Trig1Sel

 Address Offset: 0x001C

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - SEL

SEL (RW): determines what signal is routed to VTP internal Trig1

0 - '0'

1 - '1'

2 - VXS Trig1

3 - reserved

Register: SyncSel

 Address Offset: 0x0020

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - SEL

SEL (RW): determines what signal is routed to VTP internal Sync

0 - '0'

1 - '1'

2 - VXS Sync

3 - reserved

 85

Register: FPAOVal

 Address Offset: 0x0040

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

VAL

23 22 21 20 19 18 17 16

VAL

15 14 13 12 11 10 9 8

VAL

7 6 5 4 3 2 1 0

VAL

VAL (RW):

Each bit in VAL corresponds to the same bit on the front panel LVDS output bus when the

corresponding bit in FPAOSel is set to drive a value from this register.

Register: FPBOVal

 Address Offset: 0x0044

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

VAL

23 22 21 20 19 18 17 16

VAL

15 14 13 12 11 10 9 8

VAL

7 6 5 4 3 2 1 0

VAL

VAL (RW):

Each bit in VAL corresponds to the same bit on the front panel mezzanine output bus when the

corresponding bit in FPBOSel is set to drive a value from this register.

Register: FPBIStatus

 Address Offset: 0x0060

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

VAL

23 22 21 20 19 18 17 16

VAL

15 14 13 12 11 10 9 8

VAL

7 6 5 4 3 2 1 0

VAL

VAL (RO):

Each bit in VAL corresponds to the bit value read on the front panel mezzanine input bus.

 86

Register: Trig1Status

 Address Offset: 0x0064

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - STATUS

STATUS (RO):

Value read on VXS Trig1 line

Register: Trig2Status

 Address Offset: 0x0068

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - STATUS

STATUS (RO):

Value read on VXS Trig2 line

Register: SyncStatus

 Address Offset: 0x006C

 Size: 32bits

 Reset State: 0x00000000

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - STATUS

STATUS (RO):

Value read on VXS Sync line

	Benjamin Raydo
	Chris Cuevas
	Bryan Moffitt
	Dave Abbott
	Oct 9, 2023
	1 Introduction
	2. Functional Description
	2.1 XC7V550T FPGA
	2.2 XC7Z7030 FPGA
	3.1 Specification & I/O Summary
	The VXS connection is used to interface to the trigger system without the need for loose cabling. This interface provides the following signals:
	4. PCB Assembly View
	5. ARM CPU Configuration
	6.1 Event Builder Peripheral (Base Address 0x43C00000)
	6.2 AXI DMA Peripheral (Base Address 0x43BF0000)
	Refer to AXI DMA v7.1 manual (pg021_axi_dma.pdf) for details on this peripheral. It is a IP block from Vivado and is responsible for performing DMA operations to efficiently move data from Event Builder buffers into the Zynq7 processor memory.
	6.3 V7 Bridge & FPGA Config (Base Address 0x43C10000)
	This peripheral bridges the V7 register space into the Zynq7 processor memory space. It uses a custom bus/protocol and is also used as the configuration interface for the V7 FPGA image. The V7 FPGA is setup as a 16bit SelectMap slave device for confi...
	6.4 V7 Clk (Base Address 0x43C10100)
	6.5 Sd (Base Address 0x43C10200)

