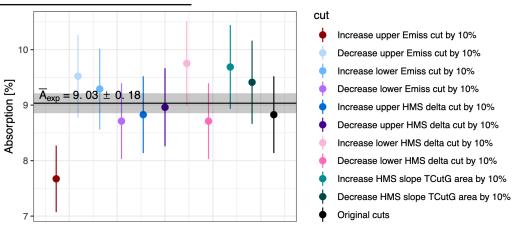


H(e, e'p) Study

Abdennacer Hamdi

Kaon LT Meeting, 09/12/2024


Department of Physics, University of Regina, Regina, SK S4S 0A2, Canada

Proton absorption

• The proton absorption is the percentage of protons that fail to form a coincidence trigger.

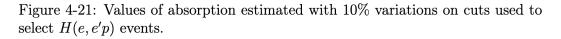
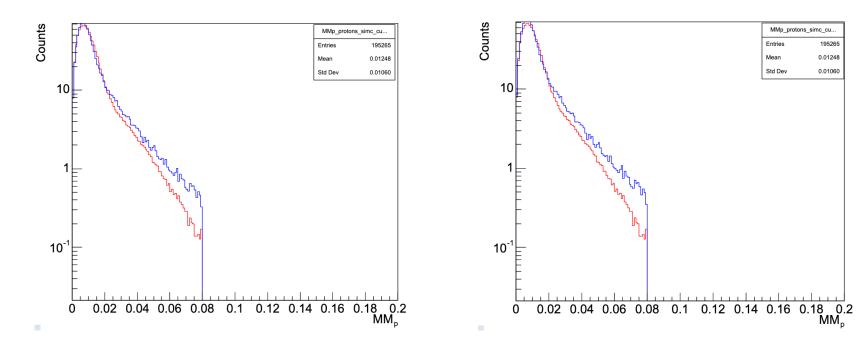

Variables	Cut	
HMS PID	H.cer.npeSum>1 && $0.90 <$ H.cal.etottracknorm && H.cal.etottracknorm < 1.10	
E_{miss}	-0.02 < P.kin.secondary.emiss && P.kin.secondary.emiss<0.04	
δ_{HMS}	$-6.0 < \mathrm{H.gtr.dp}$ && $\mathrm{H.gtr.dp} < 8.0$	
$x_{tar}^{\prime},y_{tar}^{\prime}$	Graphical cut on HMS xptar and yptar shown in Fig 4-20	Courtesy to John Matter
z_{tar}	abs(H.react.z) < 3	
y_{tar}	abs(H.gtr.y) < 2	
x_{fp}	-25 < H.dc.x[0] && H.dc.x[0] < 30	
y_{fp}	-10 <h.dc.y[0] &&="" h.dc.y[0]<25<="" td=""><td></td></h.dc.y[0]>	
W	0.85 < H.kin.W && H.kin.W < 1.04	

Table 4.8: List of cuts used in proton absorption estimate.

 A_{pred} = 8.56%

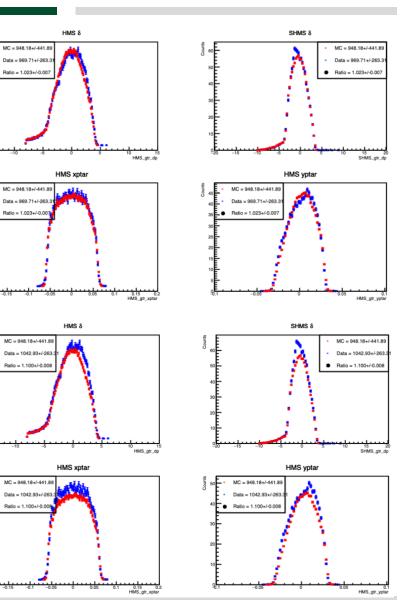
 A_{exp} = 9.03 ± 0.71%


Proton absorption

	Component	Material	Thickne ss (inch)	Thickness	Density (g/cm^ 3)	X (g/cm^2)		_I (g/cm^▶ 2)	lambda_avg (g/cm^2)		% of total	% total for item	
Target and	LH2 (after scattering in 10cm		Jo (,		- •		,	-,					
spectrometer		LH2	2.005	5.00	<u>0.070</u>			52.00		7.38E-03	9.29%		
	8	Al	0.005		2.700			107.20			0.49%	I	
		Air	2.040	30.00	0.001			90.10			0.61%		
	ing childhee	Al	0.010		2.700			107.20			0.98%		
	Dipole exit	Al	0.020	0.05	2.700	0.13716	69.70	107.20	88.45	1.55E-03	1.95%		
			2.000				14 70			- (or or		13.32%	
NGCER		Tedlar	0.002		1.300			90.30					
nttp://www.peopl		CO2 @ 1.0 ATM		200.00	0.002			88.90		5.29E-03	6.66%		
	Mirror	SiO2		0.30	2.200			97.80		8.10E-03			3.8 and 4.9 GeV
	Mirror support	Rohacell		1.80	0.110	0.19800		-	70.00	2.83E-03	3.56%	<u> </u>	J.0 and 4.5 CCV
	Exit window	Tedlar	0.002	0.01	1.300	0.00660	61.70	90.30	76.00	8.69E-05	0.11%	1	
											n	= 1,	.030, density = 0.1
DC	Entrance window	Mylar	0.001	0.0025	1.390	0.00353	58.90	84.90	71.90	4.91E-05	0.06%		
	Gas	50/50 Ethane/Ar	1.500	3.81	0.002	0.00587	68.60	101.00	84.80	6.92E-05	0.09%		7.02%
	Field Wire	W		0.00483	2.700	0.01303	69.80	108.00	88.90	1.47E-04	0.18%		7∎02′0
	Sense Wire	Be/Cu		0.00030	19.300	0.00582	110.00	185.00	147.50	3.95E-05	0.05%		
	Sense wine	5 mil kapton	0.070		1.420			85.50			4.39%		
https://hallcweb.jlal		Mylar	0.001		1.390			84.90		4.91E-05			$C_{2} \rightarrow 10$ $C_{2} \rightarrow 1$
https://hunorozyna.	Exit window	TYTY IG	0.001	0.0020	1.0.0	0.00000	50.70	0 11 0	, 1		0.0070	4.84%	6.2 and 10.6 GeV
норо	Scintilator plane (x2.25 [pe	D\/T		1.13	1.032	1.16100	57.30	81.30	69.30	1.68E-02	21.089		
1000	Schuthator plane (x2.25 [pe			1.10	1.002	1.10100	57.00	01.00	07.00	1.000 02	n	_= 1.	.015, density = 0.0
HGCER	Entrance window	Al		0.10	2.700	0.27000	69.70	107.20	88.45	3.05E-03	3.84%		· · ·
IUCLA	Zintranece ininaen	CO2 @ 1.0 ATM		104.44	0.002			88.90		2.76E-03	3.48%		6.30%
		SiO2		0.30	2.200			97.80		8.10E-03			
		Al		0.30	2.700			107.20		3.05E-03			
	EXITWINDOW	AI		0.10	2.700	0.27000	07.70	107.20	005	3.05E 00	5.04/6	21.35%	
AERO	Entrance window	AI		0.13	2.699	0.35086	69.70	107.20	88.45	3.97E-03	4.99%	21.3370	
- Mille		Aerogel		9.00									8.2 GeV
		Air		17.10				90.10		2.78E-04	0.35%		0.2 00 1
		Al		0.16				107.20				1	
	DAIL WINCON										n	= 1.	.011, density = 0.0
										7.055.00			6.09%
									SUM	7.95E-02			0.09~
									ABSORPTIC	7.64%			

Beam Energy (GeV)	3.8	4.9	6.2	8.2	10.6
Without Proton absorption	1.023 +/- 0.007	1.017 +/- 0.007	1.048 +/- 0.007	1.056 +/- 0.007	1.048 +/- 0.006
With Proton absorption	1.100 +/- 0.008	1.094 +/- 0.008	1.119 +/- 0.008	1.124 +/- 0.008	1.119 +/- 0.006
With Proton absorption + MMp<0.02	1.054 +/- 0.008	1.040 +/- 0.007	1.078 +/- 0.008		0.894 +/- 0.006

H(e, e'p) Data vs. SIMC


Without proton absorption

With proton absorption

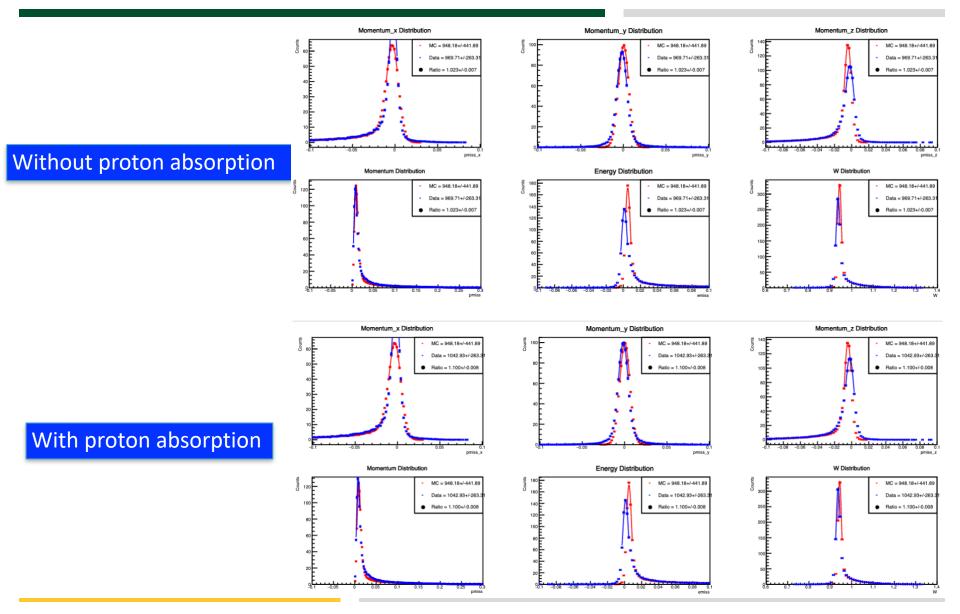
3.8 GeV

H(e, e'p) Data vs. SIMC

HeePCoin Setting Beam Energy = 3.834 Q^2 = 3.366 HMS_p = 2.026 HMS_theta = 38.600 SHMS_p = 2.583 SHMS_theta = 29.305 Red = SIMC Blue = DATA

Data/SIMC Ratio = 1.023 +/- 0.007

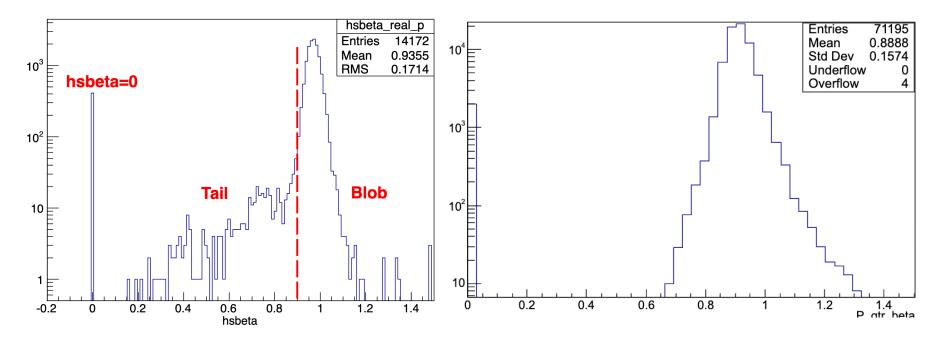
HeePCoin Setting Beam Energy = 3.834 Q^2 = 3.366 HMS_p = 2.026 HMS_theta = 38.600 SHMS_p = 2.583 SHMS_theta = 29.305 Red = SIMC Blue = DATA


Without proton absorption

With proton absorption

Data/SIMC Ratio = 1.100 +/- 0.008

H(e, e'p) Data vs. SIMC


3.8 GeV

Abdennacer Hamdi

Proton absorption Overestimate

- The proton absorption is the percentage of protons that fail to form a coincidence trigger.
- But, recoil protons could also produce another proton, while interacting with detector material, to form a good coincidence trigger.
- The events added to cover back the absorbed protons lead to over-counting

HeeP Cuts

(H_gtr_dp > -8) & (H_gtr_dp < 8)

(P_gtr_dp > -10) & (P_gtr_dp < 20)

(H_gtr_xp > -0.08) & (H_gtr_xp < 0.08)

(H_gtr_yp > -0.045) & (H_gtr_yp < 0.045)

(P_gtr_xp > -0.06) & (P_gtr_xp < 0.06)

(P_gtr_yp > -0.04) & (P_gtr_yp < 0.04)

(H_cer_npeSum > 2.0) & (H_cal_etottracknorm > 0.7)

Missing Mass < 0.08 GeV/c²

The event selection criteria (cuts) used to analyze the Heep data are listed below, many of these conditions are similar to the ones used in the previous analysis efforts [55, 75, 76]. Note that the same cuts are used for the ω analysis.

HMS Acceptance Cut: $abs(hsytar) \le 1.75$ && $abs(hsdelta) \le 8.0$ && $abs(hsxptar) \le 0.080$ && $abs(hsyptar) \le 0.035$.

SOS Acceptance Cut: $ssytar \le 1.5$ && $abs(ssdelta) \le 15$. && $abs(ssxfp) \le 20$. && $abs(ssxptar) \le 0.04$ && $abs(ssyptar) \le 0.065$.

Partial PID Cut: hsbeta > -0.1 && hsbeta < 1.5 && $hcer_npe < 2$ && ssshtrk > 0.70 && $scer_npe > 0.50$.

ACD Threshold Cut: Depending on the HMS central momentum setting, a different Aerogel Cherenkov threshold is required. See detail in Sec. 5.3.7.

Full PID Cut: Partial PID Cut && ACD Threshold Cut.

Missing Mass (M_m) and Energy Cut (E_m) : Em < 0.10 && $M_m > -0.032$ && $M_m < 0.018$.

Bill's Proton Absorption

Table 5.8: HMS spectrometer material table modified from similar table recreated by Henk Blok, which was originally produced during the F_{π} -2 analysis [55]. Original version of the table was documented in Ref. [84]. *t* shows the material thickness; ρ is the material density; λ is the nuclear collision length at $\sigma = 38.4$ mb; $X = t \times \rho$; rescaled nuclear collision length at $\sigma = 43$ mb: $\lambda' = \lambda \times 43/38.4$; X/λ' denotes the proton interaction probability as it travel through the each spectrometer component.

Absorber	Material	t	ho	λ	X	X/λ'	Partial Sums
		cm	g/cm ³	g/cm^2	g/cm^2	%	%
Target	LH_2	1984	0.072	43.3	0.143	0.370	
Target Window	Al	0.013	2.700	70.6	0.035	0.056	
Chamber Window	Al	0.0406	2.700	70.6	0.110	0.174	
Chamber Gap	Air	15	0.001	62.0	0.018	0.033	
Entrance Window	Kevlar	0.0381	0.740	60.0	0.028	0.052	
Idem	Mylar	0.0127	1.390	60.2	0.017	0.032	
Exit Window	Titanium	0.0508	4.540	79.9	0.231	0.324	
	Target - Exi	Window Sum					1.04
Dipole-DCGap	Air	35	0.001	62.0	0.042	0.076	
DC Windows	Mylar	4×(0.0025)	1.390	60.2	0.014	0.026	
DC Gas	Ar/C6H6	12×(1.8)	0.002	65.0	0.033	0.057	
DC Sensewires	W	2×(5.89E-06)	19.30	110.3	0.001	0.001	
DC Fieldwires	Be/Cu	36×(0.00018)	5.400	70.0	0.035	0.056	
Airgap DC-S2X	Air	83.87	0.001	62.0	0.101	0.182	
ACD Entrance	Al	0.15	2.700	70.6	0.405	0.642	
Aerogel	SiO2	9	0.04-0.06	66.5	0.450	0.758	
ACD Airgap	Air	16	0.001	62.0	0.019	0.034	
ACD Exit	Al	0.1	2.700	62.0	0.270	0.488	
S1X	polystyrene	1067	1.030	58.5	1.100	2.106	
S1Y	polystyrene	1067	1.030	58.5	1.100	2.106	
Dipole-DCGap - S1 Sum							
Cer Windows	Al	2×(0.102)	2.700	70.6	0.550	0.872	
Cer Gas	C4F10	135	0.002	63.0	0.332	0.590	
Cer Mirror	Support	1.8	0.050	53.0	0.090	0.190	
Cer Mirror	SiO2	0.3	2.200	66.5	0.660	1.111	
S2X	polystyrene	1.067/4	1.030	58.5	0.275	0.526	
	Cer Window	ws - S2X Sum					3.29

Bill's Proton Absorption

- For the protons interacting from the drift chambers to S1 (6.53%), it was assumed that a fraction f1 of protons were lost triggers, while the remaining fraction (1 – f1) of protons would successfully generate a trigger. These non-lost protons would either end up in the 'zero' or in the 'tail' section of the hsbeta distribution.
- Finally, for the interactions from the front window of the HGC detector through the first 1/4 thickness of S2 (corresponding to approximately the deposition which is necessary to generate a trigger), it was assumed that a fraction f2 resulted in a low β value ('zero' and 'tail'), while the remaining (1 – f2) were indistinguishable from those protons that did not undergo nuclear interactions ('blob').
- The implementation of the proton interaction correction is to divide the yield by 0.953±0.01, and is combined with other corrections when computing scaler information for each data run. In the early stage of HMS commissioning, a proton interaction study was performed and a correction of 0.945±0.02 was determined.