SHMS Geant4 for Proton Absorption Correction

Alicia Postuma

University of Regina KaonLT Experiment, Jefferson Lab Hall C March 27, 2025

Motivation

- Goal: calculate proton absorption correction for missed 3/4 triggers in the SHMS
- Previous estimates vary from 2 10 %
- Comparing with the spreadsheet estimate "SHMS_Proton_Absorption_jmatter.ods"
- Advantages of Geant4:

Spreadsheet	Geant4
Total cross-sections	Cross-sections with angular
	and energy dependencies
Proton absorption	Absorption for different
	particles (p+ / pi+ / K+)
All stopped particles	Distinguish between stopped
considered missing triggers	particles and missing triggers
One momentum	Encorporates δ variation
	across focal plane

■ Simple Geant4 simulation shmsPA

- Based off of Geant4 example program **basic/B5**
- Physics list used is FTFP_BERT (current default) with added G4OpticalPhysics for Cherenkov process, and G4EmLivermorePhysics for more precise low-energy EM interactions
- Key classes:

PADetectorConstruction (geometry) PAPrimaryGeneratorAction (event generation) PASteppingAction (actions taken per step)

Geometry customizable: *detectors.dat* turns on/off NGC, specify aerogel tray

Code available here: github:acpostuma/shmsPA

Detector Construction

- Define materials: key features density & interaction lengths
- Define geometry: accurate *z*-dimensions and arbitrary (2×2 m) *xy* dimensions
- Semi-accurate *z* positions of each component

z-Positions

	<i>t</i> (cm)	<i>z</i> (cm)
NGC	200	-177
DC1	3.81	-40
DC2	3.81	40
S1X	0.50	56
S1Y	0.50	60
HGC	104.44	137
AGC	26.39	220
 S2X	0.50	276
S2Y	2.50	280
Cal	200	392

- Comparing nuclear interaction length, λ_I
- PDG source: https://pdg.lbl.gov/2004/reviews/atomicrpp.pdf
- Spreadsheet closer to PDG
- Note λ_I (cm) = λ_I (g/cm²) ÷ ρ (g/cm³)

Material	Туре	λ_l (cm)		
		Spreadsheet	Geant4	PDG
Al	G4Element	39.70	38.894	39.40
PVT	G4Material	78.77	69.969	78.97
Kapton	G4Material	60.20	55.82	60.42
Aerogel (n=1.030)	Custom	680.42	670.3	677.6
Mylar	Custom	61.08	56.32	61.65
LH2	Custom	742	484	717

Event Generation

Read in focal plane variables from real data (run 5055): *xfp*, *yfp*, *xpfp*, *ypfp*, *delta*

Simulate realistic trajectories through materials!

- Define focal plane as z = 0, then xfp = x(0), yfp = y(0)
- *ztar* is chosen as center of target
- Given xpfp = dx/dz and ypfp = dy/dz, approximate positions at target as:

xtar = *xfp* + *xpfp* * *ztar*

■ Generate event at (*xtar*, *ytar*, *ztar*) with momentum direction (*xpfp*, *ypfp*, 1) and momentum P_{central}(1 + *delta*/100)

Simulation Output

- **PAHodoscopeSD**: records energy deposit and time of hit in each hodoscope
- **PASteppingAction**: records NPE in S2Y

- Run interactive: ./build/shmsPA
- Run in batch mode: ./build/shmsPA runPA.mac
- Run ROOT script CalcPA.C on output file (takes filename as argument)

- #runPA.mac
- 2 /run/initialize
- 3 /process/inactivate Decay pi+
- 4 /process/inactivate Decay kaon+
- 5 /run/physicsModified
- 6 /PA/generator/momentum 5 GeV
- 7 /PA/generator/useGenerated true
- 8 /PA/generator/setInFile run5055kine.txt
- 9 /gun/particle proton
- 10 /analysis/setFileName
 proton5GeV1000.root
- 11 /run/beamOn 1000

Simulated Trigger

Simple 3/4 trigger on ROOT output. In event loop:

```
energy_threshold = 0.5 //MeV
1
   npe_threshold = 100
2
   time_window = 20; //ns
3
   nTrig=0; //reset
4
5
   //calculate time differences
6
   dt1 = s1y_time - s1x_time;
7
   dt2 = s2x_time - s1x_time;
   dt3 = s2y_time - s1x_time;
8
9
   //check hodoscopes
10
   if (s1x_energy > energy_threshold) nTrig++;
   if (s1y_energy > energy_threshold &&
12
        abs(dt1)<time_window)nTrig++;</pre>
   if (s2x_energy > energy_threshold &&
13
        abs(dt2)<time_window)nTrig++;</pre>
   if (NPE > npe_threshold)nTrig++;
14
15
   //check 3/4
16
   if (nTrig<3)nMissed++;</pre>
```


Calculate missed triggers for different SHMS momenta, particle type. With no NGC, 2000 events/sample:

Momentum dependence is unexpected \rightarrow should be roughly constant above 1 GeV.

Particle Dependence

- Electron has very little absorption, as expected
- Positrons absorbed slightly more than electrons: annihilation
- Pion shows large absorption spike at 1 GeV - presumably from large pion absorption cross-section in resonance region
- SIMC already includes pion, kaon decay - turned off in simulation

Interesting Discovery

- Using Geant4 tracking information: similar number of primary p⁺ tracks stop before S2Y, regardless of momentum
- However, missed 3/4 triggers are momentum dependent
- Some stopped tracks produce a secondary track
- The fraction of stopped tracks causing a trigger via a secondary particle is momentum dependent

Total proton absorption $\approx 8.8\%$ (with NGC) or 7.5% (no NGC) across $1 < P_{SHMS} < 10~{\rm GeV}$

270

176

130

8 10

200

0

1 2 3 5 Momentum (GeV)

Secondary Tracks

Plots for proton as the incident particle. Right plot sums secondaries across momenta.

Compare percentage of **total stopped tracks** per volume (proton):

	Geant4	Calc		0	Cala
target	6.0	75		Geant4	Calc
LID	0.0	1.0	Heavy Gas Cer	28.7	27.7
HB entrance	1.0	0.8	entrance	2.9	3.1
dipole exit	1.6	1.6	gao	14.7	12.2
Noble Gas Cer	14.6	14.1	gas	14.7	13.2
entrance	0.2	0.1	mirror	8.3	8.3
cittanee	0.2	0.1	exit	2.9	3.1
gas	3.4	3	Aerogel Cer	24.0	25.5
mirror	7.6	8.3	ontronco	26	4
support	3.4	2.9	entrance	5.0	4
evit	0.2	0.1	tray (n=1.030)	15.6	16.2
	0.2	0.1	air gap	0.3	0.3
Drift Chambers	3.6	4.8	exit	4.4	5
entrance	0	0.05	Hadasaanas	20 5	171
gas	0.2	0.07	nouoscopes	20.5	17.1
wires	0.02	11	S1X	6.6	5.7
WIIC5	0.02	1.1	S1Y	7.5	5.7
cathode	3.4	3.6	S2X	64	5.7
exit	0.04	0.05	0211	0.1	

- So if most stopped tracks produce a secondary trigger, then what correction should be applied?
- Need to determine what fraction of secondary particles would pass PID cuts - added output to Geant4 tree
 NGCNPE: total NPE generated in NGC active volume
 HGCNPE: total NPE generated in HGC active volume
 AGCNPE: total NPE generated in aerogel tray
 CalEnergy: total energy deposited in calorimeter (MeV)
- Correction depends on input particle type: missed events = missed 3/4 triggers + 3/4 triggers with wrong PID
- Assuming Geant4 output represents true identity of secondary particle

At P=5 GeV, 10000 events/sample:

pion: AGC NPE > 10, HGC NPE > 10 kaon: AGC NPE > 10, HGC NPE < 10 proton: AGC NPE < 10, HGC NPE < 10 positron: NGC NPE > 5, AGC NPE > 10, HGC NPE > 10, CalEnergy/P > 0.7

No set of conditions satisfied: contaminated track (secondary of different type created partway through detector stack)

Input: 10K event sample, initial particle proton. Correction: missed 3/4 triggers + 3/4 triggers with wrong PID

P (GeV)	V)Stopped tracks (%)Missed triggers (%)		Correction (%)
2	8.75	4.44	5
3	8.43	3.14	4.76
5	8.23	1.79	6.45
8	9.49	1.28	100
10	8.39	0.92	98

- At SHMS momentum above 6.3 GeV, *p*/*K* discrimination becomes more difficult, since protons will Cherenkov in the aerogel
- Issue for both KaonLT and PionLT, e.g. for KaonLT Q^2 =5.5, W=3.02, P_{SHMS}=6.755(low ϵ)/6.842(high ϵ)
- arXiv:1607.05264 (Horn et. al. AGC paper) "The tray combination will allow for identification of kaons from 1 GeV/c up to 7.2 GeV/c"

TABLE I: Threshold momenta P_{Th} for Čerenkov radiation for charged muons, pions, kaons, and protons in aerogel of four refractive indices ranging from n=1.011 to 1.030.

	Particle	P _{Th}	P _{Th}	P _{Th}	P _{Th}
		n = 1.030	n=1.020	n = 1.015	n = 1.011
Π	μ	0.428	0.526	0.608	0.711
	π	0.565	0.692	0.803	0.935
	K	2.000	2.453	2.840	3.315
l	p	3.802	4.667	5.379	6.307

- Thank you to the KaonLT/PionLT Collaboration for many helpful comments in weekly meetings
- This work is supported by an NSERC Vanier Canada
 Graduate Scholarship

Contact: acp548@uregina.ca

Bourses d'études supérieures du Canada Vanier Canada Graduate Scholarships

EXTRA SLIDES

- Lots of absorption in S2Y: around 6% of total events
- These events still form a 3/4 trigger, and could be used to validate simulation
- Need to determine how many events stopped in S2Y produce secondaries

KaonLT data (e.g. $Q^2=3$, W=3.14, shown right) shows spike at $P_cal_etottracknorm==0$, but with proper PID and MMpi. Could correspond to tracks stopping in S2Y, but corresponds to <1% of total.

With AGC, MMpi, coin time cuts

From PAPrimaryGeneratorAction::GeneratePrimaries(G4Event* event)

```
G4double P0 = fMomentum; //read central momentum
1
2
   G4double Pmom = P0*(1.0+delta[nev]/100.); //event momentum
3
   G4double Ekin = sqrt(Pmom*Pmom + mass*mass)-mass;
4
5
   //calculate gun position, momentum
   G4double posX = xfp[nev]/100. + xpfp[nev]*ztar; //x at ztar
6
7
   G4double posY = yfp[nev]/100. +ypfp[nev]*ztar; //y at ztar
   G4double momX = xpfp[nev]; //dx/dz
8
   G4double momY = ypfp[nev]; //dy/dz
9
   G4double momZ = 1; //dz/dz
10
11
   auto Pvec = G4ThreeVector(momX, momY, momZ);
   auto Xvec = G4ThreeVector(posX*m,posY*m,ztar*m);
12
13
14
   //assign these quantities to the event
15
   fParticleGun ->SetParticleEnergy(Ekin);
   fParticleGun ->SetParticleMomentumDirection(Pvec);
16
17
   fParticleGun ->SetParticlePosition(Xvec);
```


From PASteppingAction::UserSteppingAction(const G4Step* step)

```
// loop over secondaries, create statistics
1
   const std::vector<const G4Track*>* secondaries =
2
3
       step ->GetSecondaryInCurrentStep();
4
5
   //count NPE this step
6
   G4int npe_temp = 0;
7
   for (auto sec : *secondaries) {
        if (sec->GetDynamicParticle()->GetParticleDefinition()
8
            == opticalphoton) {
            if (sec->GetCreatorProcess()->GetProcessName().
9
            compare("Cerenkov")==0)npe_temp+=1;
       3
11
   }
12
13
   NPE+=npe_temp; //add to total NPE
14
15
   //if end of track, fill ntuple with total NPE
16
   if (step->IsLastStepInVolume())
17
        analysisManager ->FillNtupleIColumn(8,NPE);
        NPE=0; //reset for next step
18
```