

Pion-LT Meeting

Mr. Muhammad Junaid Ph.D. Student Department of Physics, University of Regina, Canada

LTSep Analysis

- Working on physics setting: Q2 = 3.85, W = 2.62, t = 0.21 (2 epsilons)
- Following studies need to be finalized before the LTSep analysis:
 - Missing mass offset and cut determination
 - Diamond cut determination
 - t-resolution check
 - t and phi-binning
 - Data and SIMC yields

Cuts for pion physics data

HMS Cuts (Electrons)

-8 < H_gtr_dp < 8

 $-0.08 < H_gtr_th < 0.08$

 $-0.045 < H_gtr_ph < 0.045$

H_hod_goodstarttime == 1.0

HMS_Cal_etottracknorm > 0.7

H_Cer_npeSum > 1.5

SHMS Cuts (Pions)

- -10 < P_gtr_dp < 20
- $-0.06 < P_gtr_th < 0.06$
- $-0.04 < P_gtr_ph < 0.04$
- P_hod_goodstarttime == 1.0
 - P_aero_npeSum > 1.5
 - 1.2 < P_RF_DIST < 3.4

Analysis Cuts (Pions)

Ctime_epCoinTime_ROC1 Prompt Peak + Random Sub

0.90 < MMpi < 1.06

Diamond Cut Applied

Cuts for SIMC

HMS Cuts (Electrons)	SHMS Cuts (Pions)		
		Analysis Cuts (Pions)	
-8 < hsdelta< 8	-10 < ssdelta< 20	0.90 - MMpi - 1.06	
-0.08 < hsxpfp< 0.08	-0.06 < ssxpfp< 0.06		
-0.045 - bsypto - 0.045	0.04 < cov of p < 0.04	Diamond Cut Applied	
-0.043 < 113yp1p< 0.043	-0.04 < 55ypip< 0.04		

Global Offsets:

Global In-Plane Offsets – Momentum and Energy offsets in 0.1% unit, Angle offset in mrad unit				
BE	dBE	Global Offsets for 5.9 GeV to 9.9 GeV		
5984.8	-0.0500	HMS_dtheta	1.5000	
6394.7	-0.1500	HMS_dp	0.0000	
7937.6	-0.2222	SHMS_dtheta	1.4000	
8478.6	-0.1333	SHMS_dp	4.5000	
9171.3	-0.0444	Offsets for 10.5 GeV		
9876.9	-0.2222	HMS_dtheta	1.5000	
		HMS_dp	-3.2000	
10546.8	-1.0000	SHMS_dtheta	1.4000	
		SHMS_dp	4.5000	

Implemented Out-of-plane offsets (HMS = +0.001875rad and SHMS = -0.000155rad)

MM Offset and Cut Study

- Compared missing mass plots between data and SIMC for each setting
- Did peak fitting to calculate the difference between the data and the SIMC missing mass peaks
- Found the following offsets:

Settings	Offset Value
Q3p85_W2p62_t0p21_lowepsilon_center	-0.00649
Q3p85_W2p62_t0p21_lowepsilon_left	-0.005741
Q3p85_W2p62_t0p21_highepsilon_right	0.010645
Q3p85_W2p62_t0p21_highepsilon_center	0.010127
Q3p85_W2p62_t0p21_highepsilon_left	0.00917

Applied missing mass cut on both data and SIMC:

0.90 < MMpi < 1.06

- Determined diamond cut from "Q3p85_W2p62_t0p21_lowepsilon_center" setting by looking at Q2vsW plot.
- Found the following offsets:

Vertex Points	Vertex Values (x, y)
Q3p85_W2p62_t0p21_top_left	(3.180, 2.775)
Q3p85_W2p62_t0p21_top_right	(3.902, 2.645)
Q3p85_W2p62_t0p21_bottom_left	(3.780, 2.600)
Q3p85_W2p62_t0p21_bottom right	(4.520, 2.452)

- Tested diamond cut on all physics and SIMC settings.
- Diamond Cut looks good.

Diamond Cut Study

PionLT Experiment

May 08<u>, 2025</u>

PionLT Experiment

t-resolution plots for low and high epsilon data

NGC is included in SIMC.

May 08, 2025

- Phi distribution plots for high and low epsilon data.
- Determine range for t-binning by looking at tvsphi (high epsilon) plot.

- Phi distribution plots for high and low epsilon data.
- Determine range for t-binning by looking at tvsphi (high epsilon) plot.

t-binning for "Q2 = 3.85, W = 2.62, t = 0.21 (2-epsilons) data"

t_min	t_max	Yield (loweps)	Error (loweps)	Yield (higheps)	Error (higheps)
0.160	0.236	5170.833	73.447	6505.667	81.246
0.236	0.270	5371.667	74.758	4316.333	66.242
0.270	0.308	5350.833	74.933	4937.667	70.942
0.308	0.354	5104.167	73.460	4955.167	71.335
0.354	0.500	5224.833	75.651	8588.167	94.167

Divided "t" into 5-bins

t_pions_data_dummysub_loweps_cut_all

- Divided "phi" into 15-bins.
- Calculated yield for each phi-bin of each t-bin for the data and SIMC.

- SIMC and Data are normalized.
- Calculated Data/SIMC ratios for each setting.

Physics Setting	Physics Yield	SIMC Yield	Data/SIMC Ratio
Q3p85_W2p62_t0p21_loweps_center	4.506 +/- 0.086	4.802 +/- 0.007	0.938 +/- 0.018
Q3p85_W2p62_t0p21_loweps_left	3.684 +/- 0.073	3.817 +/- 0.006	0.965 +/- 0.019
Q3p85_W2p62_t0p21_higheps_right	24.481 +/- 0.741	25.116 +/- 0.108	0.975 +/- 0.030
Q3p85_W2p62_t0p21_higheps_center	25.612 +/- 0.798	28.391 +/- 0.120	0.902 +/- 0.028
Q3p85_W2p62_t0p21_higheps_left	18.307 +/- 0.481	20.177 +/- 0.087	0.907 +/- 0.024

- Made Data and SIMC comparison plots
- SIMC and Data are normalized.

Effective charge = Charge × Tracking Eff × Detector Eff × Hodo $\frac{3}{4}$ Eff × EDTM Live Time × Boiling Corr

- In data normalization, Following quantities are included:
 - Charge (run-by-run)
 - Tracking Efficiencies (HMS and SHMS run-by-run)
 - Detector Efficiencies (HMS Cer and HMS Cal run-by-run)
 - Hodo ³/₄ Efficiencies (HMS and SHMS run-by-run)
 - EDTM Live Time (run-by-run)
 - Dummy Target Thickness Correction Applied (3.527 +/- 0.227 PionLT)
 - Nathan's Boiling Correction Applied (-0.00028)

- Uncertainties Calculations (Absolute):
- Used raw histograms (after cuts) for error calculation.
- Took integral and error using ROOT (IntegralAndError())
- Effective charge is calculated as (calculated run-by-run);

 $Effective_charge_run_i = Charge \times Tracking Eff \times Detector Eff \times Hodo \frac{3}{4} Eff \times EDTM Live Time \times Boiling Corr$

Effective_charge_run_i_err

 $= Effective_charge_run_i \times \sqrt{\left(\frac{charge_error}{charge}\right)^2 + \left(\frac{Tracking_Eff_error}{Tracking_Eff}\right)^2 + \left(\frac{Detector_Eff_error}{Detector\ Eff}\right)^2 + \dots \dots}$

• Total effective charge is calculated as;

 $Total_effective_charge_err = \sqrt{(Effective_charge_run1_err)^2 + (Effective_charge_run2_err)^2 + \cdots \dots }$

For dummy, also included thickness correction facto

Data/SIMC Ratio is calculated as (calculated run-by-run);

Normalized_data = Data_counts/Total_data_effective_charge

 $Normalized_data_err = Normalized_data \times \sqrt{\left(\frac{Data_count_error}{Data_counts}\right)^2 + \left(\frac{Total_data_effective_charge_error}{Total_data_effective_charge}\right)^2}$

Normalized_dummy = Dummy_counts/Total_dummy_effective_charge

 $Normalized_dummy_err = Normalized_dummy \times \sqrt{\left(\frac{Dummy_count_error}{Dummy_counts}\right)^2 + \left(\frac{Total_dummy_effective_charge_error}{Total_dummy_effective_charge}\right)^2}$

 $Normalized_data_dummy_sub = Normalized_data - Normalized_dummy$ $Normalized_data_dummy_sub_err = \sqrt{(Normalized_data_err)^2 + (Normalized_dummy_err)^2}$

 $Normalized_simc = simc_counts/(simc_nevents/simc_normfactor)$ $Normalized_simc_err = Normalized_simc \times \left(\frac{simc_count_error}{simc_counts}\right)$

- Working on physics setting: "Q2 = 3.85, W = 2.62, t = 0.21 (2 epsilons)"
- The following studies have been finalized before the LTSep analysis:
 - Missing mass offset and cut determination
 - Diamond cut determination
 - t-resolution check
 - t-binning
 - phi-binning
 - Data yields
 - SIMC yields
 - Data/SIMC comparison and ratios

In progress:

- Need to check HMS delta of low-epsilon data.
- The next step is iterations.

The main shell script is located at the following path:

/u/group/c-

pionlt/USERS/\${USER}/hallc_replay_lt/UTIL_PION/scripts/yield/pion_prodYield_kinematic_analysis.sh

- All analysis Python scripts are located at the following path: /u/group/c-pionlt/USERS/\${USER}/hallc_replay_lt/UTIL_PION/scripts/yield/src/
- The input runlist files are located at the following path:

/u/group/c-pionlt/USERS/ /\${USER}/hallc_replay_lt/UTIL_BATCH/InputRunLists/PionLT_2021_2022/

- Each script produces ROOT, PDF, and CSV files.
- The output ROOT and PDF files are saved to the following path:
 /volatile/hallc/c-pionlt//\${USER}//OUTPUT/Analysis/PionLT/
- The output CSV files are saved to the following path:

/u/group/c-pionlt/USERS/\${USER}/hallc_replay_lt/UTIL_PION/LTSep_CSVs/

To run this script, execute the following command (requires 3 arguments):
 ./pion_prodYield_kinematic_analysis.sh –{flags} {RUNTYPE - Prod} {RUNLIST}

Flags	Function	RUNLIST
-C	runs cut analyzer script to trim down the root file for further analysis	Setting by setting
-m	runs the missing mass check script to determine the cut for missing mass	Setting by setting
-d	runs the diamond cut script to determine the diamond cut for the data and SIMC	Setting by setting
-е	runs script to determine the t-resolution for the t-binning	Whole Setting
-t	runs t-binning script to determine the t-binning and t-range for the data and SIMC	Whole Setting
-р	runs phi-binning and physics yield script to determine the physics yields	Setting by setting
-S	runs simc yield script to determine SIMC yields	Setting by setting
-r	runs plotting script to compare Data/SIMC and determine ratios	Setting by setting

LTSep Analysis Framework

