Pion-LT/Kaon-LT Collaboration Meeting

Muhammad Junaid Ph.D. Student Department of Physics University of Regina, Canada

LTSep Pre-Analysis

- □ Working on physics setting: Q2 = 3.85, W = 2.62, t = 0.21 (2 epsilons)
- □ Finalized the following studies before the LTSep analysis:
 - Missing mass offset and cut determination
 - Diamond cut determination
 - t-resolution check
 - > t-binning
 - > phi-binning
 - Data yields
 - > SIMC yields
 - Data/SIMC comparison and ratios
 - > Average kinematics and ratios calculation

LTSep Analysis

- □ Next steps are listed as follows:
 - Unseparated cross-section calculations
 - Model iterations
 - Rosenbluth equation fitting
 - L/T separated cross-section calculations
 - Pion Form Factor measurements

LTSep Analysis

□ Calculated kinematic variables for each t-bin for both data and SIMC.

- Error weighted average of Q2 for high and low epsilon (combined low and epsilon settings)
- Error weighted average of W for high and low epsilon (combined low and epsilon settings)
- Error weighted average of epsilon for high and low epsilon (combined low and epsilon settings)
- Error weighted average of theta for high and low epsilon (combined low and epsilon settings)
- Average t-central for high and low epsilon (combined low and epsilon settings)
- Average phi-central for high and low epsilon (combined low and epsilon settings)
- □ Calculated ratios (DATA/SIMC) for each t & phi-bin setting-by-setting, separately.
- Calculated error weighted average of ratios for t & phi-bin for both high and low epsilon (combined center, right, and left settings)
- □ Error-weighted average calculations:

$$w_{i} = \frac{1}{e_{i}^{2}}$$
$$\overline{x} = \frac{\sum (x_{i} \cdot w_{i})}{\sum \omega_{i}}$$
$$\sigma_{\overline{x}} = \sqrt{\frac{1}{\sum w_{i}}}$$

Iteration 0

05/07/2025 10:05 am

Muhammad Junaid, Collaboration Meeting

Muhammad Junaid, Collaboration Meeting

Iteration 1

LTSep Funtions

]	Started with Tanja's functional forms:		
	$\frac{d\sigma_T}{dt} = \frac{A}{Q^2} + \frac{B}{Q^4}$		
	$\frac{d\sigma_L}{dt} = \mathbf{E} \frac{\mathbf{Q}^2}{(1 + \mathbf{H} \cdot \mathbf{Q}^2 + \mathbf{I} \cdot \mathbf{Q}^4)^2} \mathbf{e}^{(\mathbf{F} + \mathbf{G} \cdot \ln(\mathbf{Q}^2)) \cdot -t }$		
	$\frac{d\sigma_{LT}}{dt} = \left(\mathbf{e}^{\mathbf{J} + \frac{\mathbf{K}}{\sqrt{\mathbf{Q}^2}} \cdot -t } + \mathbf{L} + \frac{\mathbf{M}}{\mathbf{Q}^4}\right) \cdot \sin(\mathbf{\theta}^*)$		
	$\frac{d\sigma_{TT}}{dt} = \frac{N}{Q^4} \cdot \frac{ -t }{(-t +m_{\pi}^2)^2} \cdot \sin(\theta^*)^2$		

Variable Number (F)	Parameter	Initial Value (Fpi2)
1	Α	4.5
2	В	2.0
5	E	350
6	F	16
7	G	-7.5
8	н	1.77
9	1	0.05
10	J	0.79
11	К	3.4
12	L	1.1
13	М	-3.6
14	N	-5.0

Muhammad Junaid, Collaboration Meeting

LTSep Analysis

- □ Working on physics setting: "Q2 = 3.85, W = 2.62, t = 0.21 (2 epsilons)"
- □ The following studies have been finalized for Pion Form Factor measurement:
 - Unseparated cross-section calculations
 - Model iterations
 - Rosenbluth equation fitting
 - L/T separated cross-section calculations

In progress:

- Implementing the correct error calculation method
- ✤ Implementing functional fits to LT-separated cross-sections.
- ✤ Looking into the weight re-calculation script.
- ✤ Will start doing model iterations.