Pion-LT/Kaon-LT Collaboration Meeting

Muhammad Junaid
Ph.D. Student
Department of Physics
University of Regina, Canada

LTSep Analysis

- Next steps are listed as follows:
 - Unseparated cross-section calculations
 - Model iterations
 - Rosenbluth equation fitting
 - > L/T separated cross-section calculations
 - > Pion Form Factor measurements

Weight Re-calculation

- □ Results from the weight re-calculation script.
- ☐ Previously, using the wrong variables (RECON) to calculate weights.
- □ Added "epsiloni", "phicm" and "thetacm" variables to SIMC to calculate the correct weights using the weight calculation script.
- ☐ First, ran one of the physics settings through SIMC.
- ☐ Used the same parameters to recalculate the weights using the weight calculations script.

```
p1=3.9, p2=5.8, p3=0.0, p4=0.0, p5=214.0, p6=8.6, p7=0.7, p8=1.77, p9=0.05, p10=3.98, p11=-0.8, p12=0.7, p13=22.5, p14=14.9, p15=0.0, p16=0.0
Fit parameters loaded from new iteration file:
                                    ] 0% (0/899532)Event 0: Q2=3.5192832946777344, W=2.6738343238830566, theta_cm(rad)=0.20509770512580872, epsilon=0.2
Progress: [
77149498462677, phi cm=4.379927635192871, t=0.2631569802761078, cross section=9.946350370177152e-08
Event 0: sigcm prev iter = 9.9463484559692e-08, sigcm (new) = 9.946350370177152e-08
Event 0: Weight prev iter = 7.198261755547719e-07, Weight (new) = 7.198263140877214e-07
Progress: [>
                                    0% (1/899532)Event 1: Q2=3.3427963256835938, W=2.754152536392212, theta cm(rad)=0.21659457683563232, epsilon=0.26
61615014076233, phi cm=3.7567152976989746, t=0.2486429363489151, cross section=6.312315431804355e-08
Event 1: sigcm prev iter = 6.312313871603692e-08, sigcm (new) = 6.312315431804355e-08
Event 1: Weight prev iter = 3.545968922935572e-07, Weight (new) = 3.5459697993848705e-07
Progress: [>
                                    0% (2/899532)Event 2: Q2=3.508849859237671, W=2.7293996810913086, theta cm(rad)=0.09994568675756454, epsilon=0.25
95612406730652, phi cm=4.906927585601807, t=0.17899467051029205, cross section=5.55286770657013e-08
Event 2: sigcm prev iter = 5.5528687425976386e-08, sigcm (new) = 5.55286770657013e-08
Event 2: Weight prev_iter = 4.144862657540216e-07, Weight (new) = 4.1448618842117024e-07
Progress: [->
                                     8% (78258/899532)
```

- **☐** Getting the same weights.
- □ Calculated SIMC yields for both ROOT files.

Weight Re-calculation

☐ Change the NtupleInit.f and results_write.f files in SIMC.

```
c_gfortran > \Box NtupleInit.f
   if (doing pion .or. doing kaon .or. doing delta) then
     NtupleTag(m) = 'pdotqhat' ! 49
     m = m+1
     NtupleTag(m) = 'Q2i'
     m = m+1
     NtupleTag(m) = 'Wi'
     m = m+1
     NtupleTag(m) = 'ti'
     m = m+1
     NtupleTag(m) = 'phicm'
     m = m+1
     NtupleTag(m) = 'thetacm' ! 54
     m = m+1
     NtupleTag(m) = 'epsiloni' ! 55
     if(using tgt field) then
        m = m+1
        NtupleTag(m) = 'th tarq' ! 56
        m = m+1
        NtupleTag(m) = 'phitarq' ! 57
        m = m+1
        NtupleTag(m) = 'beta' ! 58
        m = m+1
        NtupleTag(m) = 'phis' ! 59
```

```
gfortran > \equiv results_write.f
  if (doing pion .or. doing kaon .or. doing delta) then
    dummy = pferx*vertex%ug%x + pfery*vertex%ug%y + pferz*vertex%ug%z
    if (dummy.eq.0) dummy=1.e-20
    ntu(43) = pfer/1000.*abs(dummy)/dummy
    ntu(44) = main%sigcc
    ntu(45) = ntup%sigcm
    ntu(46) = main%weight
    ntu(47) = decdist
    ntu(48) = sqrt(Mh2 final)
    ntu(49) = pfer/1000.*dummy
    ntu(50) = vertex \% 02/1.e6
    ntu(51) = main\%w/1.e3
    ntu(52) = main%t/1.e6
    ntu(53) = main%phicm
    ntu(54) = main%thetacm
    ntu(55) = main%epsilon
    if(using tgt field) then
       ntu(56) = recon%theta tarq
       ntu(57) = recon%phi targ
       ntu(58) = recon%beta
       ntu(59) = recon%phi_s
       ntu(60) = recon%phi c
       ntu(61) = main\%beta
       ntu(62) = vertex%phi s
```

LTSep Analysis

- \square Working on physics setting: "Q2 = 3.85, W = 2.62, t = 0.21 (2 epsilons)"
- ☐ The following studies have been finalized for Pion Form Factor measurement:
 - > Unseparated cross-section calculations
 - Model iterations
 - Rosenbluth equation fitting
 - > L/T separated cross-section calculations

□ In progress:

- Checking Implementation of functional fits to LT-separated cross-sections.
- Working on model iterations.