KaonLT Replay

- Rerun replay the all 10 settings in <u>Q^2=3.0, W=3.14</u> and <u>Q^2=2.1,W=2.95</u>
- Used repository :
 - Hallc_replay_ly: https://github.com/JeffersonLab/hallc-replay-lt/tree/LTSep-Analysis 2022
 - UTIL_KAONLT: https://github.com/JeffersonLab/UTIL KAONLT/tree/LTSep Analysis 2024
- Issues:
 - File size > what Richard provides (847M vs 713M),
 - But Missing mass is identical (probably just root version diff)

```
/lustre24/expphy/cache/hallc/kaonlt/Pass3_Dec_2023/ROOTfiles/Analysis/KaonLT [ckin@ifarm2402 KaonLT]$ ls -lh | grep 5013 -r--r-- 1 trottar enp 713M Apr 22 21:48 Kaon_coin_replay_production_5013_-1.root
```

```
/lustre24/expphy/volatile/hallc/c-kaonlt/ckin/ROOTfiles/Analysis/KaonLT [ckin@ifarm2402 KaonLT]$ ls -lh | grep 5013 -rw-r--r--. 1 ckin c-comm2017 847M Sep 6 10:39 Kaon_coin_replay_production_5013_-1.root
```

Diamond cut

- Threshold = 3 counts
- Pick two control points well within the diamond
- Pointed are selected by the first and last non-zero bin
- Fit all 4 sides
- smear the histogram first for the noise ?

Diamond cut $Q^2 = 3.0, W = 3.14$

Diamond cut $Q^2 = 2.1, W = 2.95$

Missing Mass Fit

- As usual, fit the Λ peak with gaussian
- The same shift is used for pion-selected data
- Shift is applied to P_kin_secondary_MMK for both cases
- Random subtraction is as previously reported

Pion background subtraction

- Proton peaks align but differs in resolution
- Scale according to integral under the peak

Deconvolve before subtraction ?

Sigma background subtraction

SIMC negative Weight

Only Left gives negative xsect.

$t vs \phi distribution Q^2 = 3.0, W = 3.14, high \epsilon$

Only Left gives negative xsect.

Xsect values

Xsect values

- Need to modify the parameters in phi-dependent terms to make xsect positive
- Everywhere?

Parameterization

$$\sigma_{L} = \frac{p_{1}|t|}{(|t| + m_{K}^{2})^{2}} \exp(-p_{2}|t|)$$

$$\sigma_{T} = \frac{p_{5}}{|t|^{p_{6}}} \exp(-|p_{7}t|)$$

$$\sigma_{LT} = \frac{p_{9}}{|t|}$$

$$\sigma_{TT} = \frac{p_{13}}{|t|^{p_{14}}} \exp(-|p_{15}t|)$$

$$2\pi \frac{d\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

1	4.34253e+01
2	1.45694e+00
3	0.00000e+00
4	0.00000e+00
5	1.98779e-02
6	7.34330e+00
7	6.19457e-12
8	-5.26738e-01
9	3.23135e+01
10	0.00000e+00
11	-1.85133e+02
12	0.00000e+00
13	3.75752e+02
14	-3.52052e+00
15	6.12463e-18
16	1.85370e-08

w factor always positive.

Parameterization

•
$$\cos(\pm 160^{\circ}) \approx -0.93$$

•
$$\cos(\pm 320^{\circ}) \approx 0.76$$

Let's just decrease p9 so all are +ve

$$\sigma_{L} = \frac{p_{1}|t|}{(|t| + m_{K}^{2})^{2}} \exp(-p_{2}|t|)$$

$$\sigma_{T} = \frac{p_{5}}{|t|^{p_{6}}} \exp(-|p_{7}t|)$$

$$\sigma_{LT} = \frac{p_{9}}{|t|}$$

$$\sigma_{TT} = \frac{p_{13}}{|t|^{p_{14}}} \exp(-|p_{15}t|)$$

$$2\pi \frac{d\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

1	4.34253e+01
2	1.45694e+00
3	0.00000e+00
4	0.00000e+00
5	1.98779e-02
6	7.34330e+00
7	6.19457e-12
8	-5.26738e-01
9	3.23135e+01
10	0.00000e+00
11	-1.85133e+02
12	0.00000e+00
13	3.75752e+02
14	-3.52052e+00
15	6.12463e-18
16	1.85370e-08

Total (sign) 1.00 1.0 0.75 0.50 8.0 $-t \, (\mathrm{GeV}^2)$ 0.25 0.00 -0.250.4-0.50-0.750.2 -1.00-50 50 100 150

 ϕ (deg)

Total

10⁵

 10^{4}

 10^{3}

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

-150 -100

1.0

8.0

0.4

0.2

-150 -100

-50

50

 ϕ (deg)

100

150

- $32.3 \to 0.0$
- Negative region in large |t|
- Right and center settings
- Need everywhere +ve?

1	4.34253e+01
2	1.45694e+00
3	0.00000e+00
4	0.00000e+00
5	1.98779e-02
6	7.34330e+00
7	6.19457e-12
8	-5.26738e-91
9	0.00000e+00
10	0.00000 €+00
11	-1.85133e+02
12	0.00000e+00
13	3.75752e+02
14	-3.52052e+00
15	6.12463e-18
16	1.85370e-08

before after

Next

- Done: "Optimal" binning by simply making sure each bin has a minimum counts
- Yield as a function of t/\phi for both data and simc
- Check ratio for the 0-th iteration