Pion-LT/Kaon-LT Collaboration Meeting

Muhammad Junaid
Ph.D. Student
Department of Physics
University of Regina, Canada

LTSep Analysis

- Next steps are listed as follows:
 - Unseparated cross-section calculations
 - Model iterations
 - Rosenbluth equation fitting
 - L/T separated cross-section calculations
 - Pion Form Factor measurements

New Model Functions V10

LTSep Functions

☐ Started with functional forms (with SIMC W_factor):

$$\frac{d\sigma_T}{dt} = \left(\frac{\textbf{p1}}{Q^2}\right) \cdot \mathbf{e}^{(\textbf{p2} \ Q^2)} \cdot \mathbf{e}^{(\textbf{p3} \ |t|)}$$

$$\frac{d\sigma_L}{dt} = (\textbf{p5} + \textbf{p6}/Q^2) \cdot \frac{|t|}{(|t| + m_\pi^2)^2} \cdot Q^2 \mathbf{e}^{(\textbf{p7}|t|)} F_\pi^2$$
 Where, $F_\pi = \frac{1}{(1+\textbf{p8}\cdot Q^2+\textbf{p9}\cdot Q^4)}$

$$\frac{d\sigma_{LT}}{dt} = \left(\frac{\mathbf{p10}}{Q^2} + \mathbf{e}^{(\mathbf{p11}|t|)} \cdot \frac{\mathbf{p12}}{|t|^2}\right) \cdot \sin(\theta^*)$$

$$\frac{d\sigma_{TT}}{dt} = \left(\frac{\mathbf{p14}}{Q^2} + \frac{\mathbf{p15}}{|t|^3}\right) \cdot \sin(\theta^*)^2$$

In σ_L , fixed p8 and p9

Parameter	Initial Values
p1	23.3
p2	0.0098
рЗ	-1.5
р5	214
p6	8.6
р7	0.7
p8	1.77
p9	0.05
P10	0.87
P11	-5.0
P12	1.1
p14	-217.09
P15	1.0

LTSep Analysis

- \square Working on physics setting: "Q2 = 3.85, W = 2.62, t = 0.21 (2 epsilons)"
- □ The following studies have been finalized for Pion Form Factor measurement:
 - > Unseparated cross-section calculations
 - Model iterations
 - Rosenbluth equation fitting
 - > L/T separated cross-section calculations
- □ In progress:
- Working on model iterations.