Pion-LT/Kaon-LT Collaboration Meeting

Muhammad Junaid
Ph.D. Student
Department of Physics
University of Regina, Canada

LTSep Analysis

- Next steps are listed as follows:
 - Unseparated cross-section calculations
 - Model iterations
 - Rosenbluth equation fitting
 - > L/T separated cross-section calculations
 - Pion Form Factor measurements

New Model Functions V17

LTSep Functions

□ Started with functional forms (with SIMC W_factor):

$$\frac{d\sigma_T}{dt} = \left(\frac{\textbf{p1}}{Q^2}\right) \cdot \mathbf{e}^{(\textbf{p2} \ Q^2)} \cdot \mathbf{e}^{(\textbf{p3} \ |t|)}$$

$$\frac{d\sigma_L}{dt} = (\textbf{p4} + \textbf{p5}/Q^2) \cdot \frac{|t|}{(|t| + m_\pi^2)^2} \cdot Q^2 \mathbf{e}^{(\textbf{p6}|t|)} F_\pi^2$$
 Where, $F_\pi = \frac{1}{(1+\textbf{p7}\cdot Q^2+\textbf{p8}\cdot Q^4)}$

$$\frac{d\sigma_{LT}}{dt} = \left(\frac{p9}{Q^2} + e^{(-p10|t|)} \cdot \frac{p11}{p12 + |t|}\right) \cdot \sin(\theta^*)$$

$$\frac{d\sigma_{TT}}{dt} = \left(\frac{p13}{Q^2} + e^{(p14|t|)} \cdot \frac{p15}{(p16 + |t|)^3}\right) \cdot \sin(\theta^*)^2$$

Parameter	Initial Values	Parameter	Initial Values
p1	23.3	р9	0.87
p2	0.0098	P10	5.0
р3	-1.5	P11	1.1
р4	214	P12	0.0
р5	8.6	p13	217
р6	0.7	p14	-5.0
р7	1.77	P15	0.1
p8	0.05	P16	0.0

New Model Functions V18

LTSep Functions

□ Started with functional forms (with SIMC W_factor):

$$\frac{d\sigma_T}{dt} = \left(\frac{\textbf{p1}}{Q^2}\right) \cdot \mathbf{e}^{(\textbf{p2}\,Q^2)} \cdot \mathbf{e}^{(\textbf{p3}\,|t|)}$$

$$\frac{d\sigma_L}{dt} = (\textbf{p4} + \textbf{p5}/\textbf{Q}^2) \cdot \frac{|t|}{(|t| + m_\pi^2)^2} \cdot Q^2 \mathbf{e}^{(\textbf{p6}|t|)} F_\pi^2$$
 Where, $F_\pi = \frac{1}{(1+\textbf{p7}\cdot Q^2+\textbf{p8}\cdot Q^4)}$

$$\frac{d\sigma_{LT}}{dt} = \left(\frac{p9}{Q^2} + e^{(-p10|t|)} \cdot p11(|t|)^{p12}\right) \cdot \sin(\theta^*)$$

$$\frac{d\sigma_{TT}}{dt} = \left(\frac{p13}{Q^2} + e^{(p14|t|)} \cdot \frac{p15}{(p16 + |t|)^3}\right) \cdot \sin(\theta^*)^2$$

Parameter	Initial Values	Parameter	Initial Values
p1	23.3	р9	0.87
p2	0.0098	P10	5.0
р3	-1.5	P11	1.1
р4	214	P12	0.0
р5	8.6	p13	217
р6	0.7	p14	-5.0
р7	1.77	P15	0.1
p8	0.05	P16	0.0

LTSep Analysis

- \square Working on physics setting: "Q2 = 3.85, W = 2.62, t = 0.21 (2 epsilons)"
- ☐ The following studies have been finalized for Pion Form Factor measurement:
 - > Unseparated cross-section calculations
 - Model iterations
 - Rosenbluth equation fitting
 - L/T separated cross-section calculations
- □ In progress:
- Working on model iterations.
- Working on sigma LT and sigma TT terms in iterations.