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Motivation to Improve GEP Event-Reconstruction

« We have collected approx. 3.8 C and 94 C of data for kin1(5.7 GeV?) and kin3(11.1 GeV?), respectively

* Assuming overall trigger/detection/reconstruction efficiency of 70% (w/o radiative losses), we will have
following error bounds as a best-case scenario

* But currently we are well below that, the first major analysis task for GEP is to improve reconstruction
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Analysis Machinery for GEP and other SBS Experiments

“evio” Raw data
files from CODA

Event Reconstruction

SBS_OFFLINE
Built “on” Hall-A analyzer / Podd
Inherits from a lot of base classes in Podd
but includes extensive additions
Decoding
Detector level reconstruction
Spectrometer level reconstruction
Physics variables for further analysis

SBS_REPLAY

 Data Basesto store detector/
spectrometer specific information like
channel maps

» Setreplay parameters/thresholds

* Definitions of outputs from replay

* Replay scripts that use SBS_OFFLINE

machinery to steer analysis

ROOT files with output TTree
branches for interactive
physics analysis
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G4SBS
Geant4 based simulation for
SBS experiments
Elastic/inelastic/gun event
generation
Detector/spectrometer
response simulation
Returns energy depositions /

\ 4

LIBSBSDIG \
Library for digitization of
simulation output
Converts g4sbs time,
position, energy deposit
etc., into ADC, TDC,
crate, slot, channel, etc. /




GEP Experiment Event Reconstruction Challenges

Main challenge by faris GEM tracking under high occupancy
(space and time signal pileup) and low signal to background
ratios

The hit comes from the large number of combinatorics = high
computational times + (fake hits + fake tracks)

1D cluster formation and 2D hit reconstruction is especially
affected by high occupancy - lots of fake hit reconstruction

Tracking portion itself is done in field-free regions = straight
lines; hence not the most complicated part ifthe hits fed in are
mostly true/real proton hits
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Front Tracker strips fired in an event color coded in ADC strength.
22 uA on LH2 target; one of the highest background cases in SBS.
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GEP Proton Arm GEM Trackers

30-cm LH2 target

85% polarized e~ beam,

(up to)

Proton Arm: SBS magnet

24T

https://github.com/JeffersonLab/gdsbs

Electron Arm: High-T Lead-Glass (ECAL) +
Scintillator planes (CDET)

CH2 (HDPE)
Analyzer, ~56 cm

10.6 GeV, 70 uA

-m) and detectors 1\ (p1) and rear (FPP) GEM trackers for

proton reconstruction and polarimetry

GEP in Monte Carlo — A. Puckett

Front Tracker (FT)
Hee’p Scattering vertex recon.
Momentum recon
Incident proton tr. on analyzer
8 GEM layers
* 150 cm x40 cm X-W
type readout layers x 2
* 150cm x40 cm U-V
type readout layers x 4
* 200 cm x 60 cm X-Y
type readout layer x 2
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FIG. 9. Principle of the polarimeter. showing a noncentral tra-
jectory through the front chambers, scattering in the analyzer, and a
track through the back chambers: @ is the polar angle, and ¢ is the
azimuthal angle from the y direction counterclockwise.

Proton-nucleon spin-orbitinteraction
causes azimuthal asymmetry

analyzer

Focal Plane Polarimeter Tracker
(FPP)

* Reconstruct scattered proton
track from CH, analyzer for
proton polarimetry

» 8 GEM layers

* 200 cm x 60 cm X-Y type
readout layers x 6

150cm x40 cm UV GEM layer

200 cm x 60 cm XY GEM la
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High-Level Overview of Current GEM Track Reconstruction

= Region of Interest calculation on p-arm tracks from e-arm information

« Attempting tracking using the entire GEM active areas impossible as combinatorics explode
. Focus on “Regions of Interest” within the GEM modules(2D hit-finding)/layers(track-formation)
. Use external detector constraints (calorimeter clusters) and heep (elastic) kinematics

Simulation: electron angles reconstructed from ECal/CDet assuming v, = 0
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1D clustering and 2D hit formation within GEM modules

= 1D clustering: combine “strip hits” caused by the same MIP/ionization cloud in each dimension (U/V)

Loop on all fired strips and make a list of strips with “local maxima” of ADC values = apply thresholds and timing cuts

For each local maxima, check for contiguous higher peaks either to the left or to the right and evaluate the current peak’s “prominence”
compared to the higher peak if found. If “not-prominent”, remove the current strip from list of local maxima

Now using the above list of refined local maxima as “cluster seeds”, grow the local maxima into individual clusters
However, there could be still overlapping clusters and therefore cluster splitting is needed

If there is another local maxima within a specified distance to the local maxima in question, consider that to be from a different cluster,
and calculate the contribution from that cluster to the current cluster as a function of local maxima ADC strength and distance

Continue growing the cluster around the seed considering the ADC weighted time differences and Pearson correlation coefficient
Calculate cluster properties such as position, avg ADC, ADC asymmetry, avg time, and etc.

¥ sirips, Module 2
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= 2D hit formation: by comparing each ‘U cluster’ with ‘V cluster’

First check whether the 2D hit is within the detector active area / constraint region
U-V cluster ADC correlation via Pearson coefficient test

U-V cluster time difference

ADC asymmetry

If the above criteria is met, the 2D hit is marked to be “kept”
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Track Reconstruction

= 3D track formation

Divide each tracking layer into a 2D uniform rectangular grid (5 X 5 mm?) and make a list of 2D hit candidates in each grid bin
Start to make tracks by requiring all ‘N’ layers (1 hit in each layer). Then N-1, N-2, ... down to 3 hits on track.

Loop over all grid bins with the hits in the “front” layer. Form a straight line from grid bin center to “back constraint point”.
Calculate error matrix from grid bin width and back constraint width and project to back GEM layer to define a range of grid
bins that must be considered in the back layer. Now for a given “front” layer bin, we have a set of “back” layer bins.

For a given combination of front and back layer bins, consider ALL combination of one GEM hit in front and back layers

Draw straight line between the front layer GEM hit and back layer GEM hit, and project to all intermediate layers, with special
resolution in the range of intrinsic GEM resolution. Now we consider hits within bins of the intermediate layers that intercept
the straight-line projection and consider the hits of the bins within a tolerance to the projection (edge tolerance — 1.5 mm)
Now loop over all possible combinations of one hit per layer, find the combination with best )(Z/dof of straight-line fit in 3D,
consistent with some other cuts on “hit quality” (timing, ADC correlation, optics, etc.)

= Finding constraints for FT and FPP trackers

Get front and back constraints for FT from ECal/CDet. For FPP, front constraint from ECal/CDet with proton track projected to
analyzer mid-plane and back constraint from HCal cluster

= Two modes of tracking currently developed: 1) FT first and then FPP  2) FPP first and then FT (faster; only one v, bin with smallest

‘sclose’w.r.t FPP track)
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Elastic Event Extractions (GEP kin-3; 11.1 GeV?)

Ax (m)

Difference between ECal clus. pos. and predicted
elastic e’ hit pos on ECal by proton kinematics
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Improvements Envisioned

= Train a ML model with simulated data for a more accurate/efficient 2D hit formation
* Currently we rely on strip ADC pulses’ shape, timing, ADC strength, and U-V correlation criteria for 1D cluster and 2D hit formation
* Hundreds of “knobs” to adjust and prohibitively complicated to find the right combination for a given experiment condition
* Make use of possible “unseen” correlations by the existing algorithm
* Need MC truth to train. Currently working on improving our MC machinery to make its results agree better with the real GEM data
* Plan to seek expert guidance in the very near future
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Summary

* I[mproving event (track) reconstruction is the most vital and challenging
analysis task for GEP

* Current machinery is able to find tracks with GEM occupancies reaching
50%; but improvements/additions needed to enhance efficiency

* We think the GEM 1D clustering and 2D hit formation is where the biggest
efficiency lost happen

* Plans to incorporate Al/ML - work ongoing to improving GEM simulation to
generate more realistic training data

* Other traditional algorithmic improvements are also proposed

» Stay tuned for future analysis developments GEP results
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Improvements Envisioned Cont.

= For GEM strip timing calculations, rely mostly on the last 3-4 time-samples (out of 6) as the good MIP signals
correlated with the trigger typically peak at around the 4™ time sample 2
i.e., use high signal/background time samples
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= Transform GEM “strip-space” information to a “pixel-space” and do (i, j

Improvements Envisioned cont.

)th <U-pixel’ to ‘V-pixel’ comparisons to

identify 2D hits = the goal is to preserve the 2D special correlation of GEM hits and avoid brute-force U and V
1D cluster matching which could be (unverified) a bottle-neck / inefficient in high occupancy scenarios
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