Coincidence TOF Calibration for E06010

Introduction LHRS Timing BigBite Timing Coincidence Timing

Jin Huang <jinhuang@mit.edu>

E06-010 Setup

- E0-6010 Setup
 - Two arm coincidence
 - Each arm equipped HRS with a high resolution timing detector
 - LHRS server as hadron arm

efferson Lab

- Detecting pion, kaon and proton
- Total fly length ~27m
- BigBite detector electron with short fly path

The idea

- coincidence time (CT) between this two spectrometers are defined as the time difference between when two particles are created in the reaction
 - Sharp peak @ Ons for perfect system
 - Multiple peaks for multi-final state
- Useful for
 - Reducing random coincidence background
 - Help hadron arm PID

General Calibration

- 3 independent piece for calibration
 - $CT = RF Time_{LHRS} RF Time_{Bigbite} Trigger Time Difference$
- RF Time_{Spectrometer} is
 - time cost between
 a vertex reaction and single arm trigger
 - Consist of
 - Time of flight
 - Respond time of timing detector
 - timing detector TDC
- Calibrated VS RF signal
- Only relative timing counts

LHRS Timing by Chiranjib Dutta

- Timing detector : s2m
- Optimal Calibration Order
 - Rough offset alignment by looking into two-barhit events, with tight ADC cut
 - To precision below 1ns, so possible for next step
 - 2. Fit for matrix elements for fly path length using RF structure, with tight ADC cut
 - fly path length matrix is similar as optics matrix but independent
 - Up to 2nd order of x_{pf} and th_{pf} is fine for us
 - 3. Fine bar offset and time walk correction using RF structure

LHRS Timing Calibrations by Chiranjib Dutta

Time walk effect contribute to a ~0.5ns long tail, corrected

LHRS single arm final by Chiranjib Dutta

efferson Lab

- Reached a 1σ resolution ≤ 140 ps
- Checked with RF Structure RF Time_{Spectrometer} t_{RF}

BigBite Timing

- Simpler due to
 - Short flight path, simple described by

 $\Delta L_{\rm time \ walk}/c = 1.4 * \theta_{\rm MWDC}$

- \circ Similarity of particle speed (e & $\gamma)$
- Timing detector : BigBite Timing Plane
 - 13 scintillator bar behind shower detector
 - Resolution ~230ps
 - Larger but similar time walk effect for all PMTs $\Delta t_{\text{time walk}} = -17.9(\text{ADC} \text{pedstal})^{-0.140} \text{ns}$
 - Calibrated by minimizing timing difference between timing of neighbor bars when both hit

BigBite single arm final

efferson Lab

Final electron timing resolution reached
 σ~270ps Bigbite RF Structure

Jin Huang <jinhuang@mit.edu>

Combing -> CT

- Difference between two single arm trigger is measured by high res. TDC
- Compiling All Pieces:
 - **σ~340ps**

fferson Lab

- Random Coinc Rej. 100:1
- Pion Rej. from Kaon
 >25:1
- Also for (e,γhadron)
 σ~400ps

It's check run by run

Fun part: Identifying more particle with CT?

We can also identify deuteron and possibly anti-proton? from the (e,e'hadron) CT

Special Thanks to contributors to this talk

- Chiranjib Dutta
- Kalyan Allada
- Yi Qiang, Vincent Sulkosky, Ole Hansen, et al,

Jin Huang <jinhuang@mit.edu>