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ABSTRACT OF DISSERTATION

MEASUREMENT OF SINGLE-TARGET SPIN ASYMMETRIES IN THE
ELECTROPRODUCTION OF NEGATIVE PIONS IN THE SEMI-INCLUSIVE DEEP

INELASTIC REACTION n↑(e, e′π−)X ON A TRANSVERSELY POLARIZED 3He
TARGET

The experiment E06010 measured the target single spin asymmetry (SSA) in the semi-
inclusive deep inelastic (SIDIS) n↑(e, e′π−)X reaction with a transversely polarized 3He
target as an effective neutron target. This is the very first independent measurement of
the neutron SSA, following the measurements at HERMES and COMPASS on the proton
and the deuteron. The experiment acquired data in Hall A at Jefferson Laboratory with a
continuous electron beam of energy 5.9 GeV, probing the valence quark region, with x =
0.13→ 0.41, at Q2 = 1.31→ 3.1 GeV2. The two contributing mechanisms to the measured
asymmetry, viz, the Collins effect and the Sivers effect can be realized through the variation
of the asymmetry as a function of the Collins and Sivers angles. The neutron Collins and
Sivers moments, associated with the azimuthal angular modulations, are extracted from the
measured asymmetry for the very first time and are presented in this thesis. The kinematics
of this experiment is comparable to the HERMES proton measurement. However, the
COMPASS measurements on deuteron and proton are in the low-x region. The results of
this experiment are crucial as the first step toward the extraction of quark transversity and
Sivers distribution functions in SIDIS. With the existing results on proton and deuteron,
these new results on neutron will provide powerful constraints on the transversity and Sivers
distributions of both the u and d-quarks in the valence region.
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CHAPTER 1: INTRODUCTION

1.1 The Structure of Matter : A Never-ending Quest

The internal structure of matter has been the most interesting and the most exciting quest

since the onset of human civilization. Both in the realms of science and philosophy, human

minds have been trying to seek answers to the most fundamental thoughts such as: what

is the origin of nature, what is nature made of, what are the fundamental particles and

how do they create matter? In the process of understanding nature, people have come a

long way and learned a lot about the constituents of matter and their various properties.

However, there are still very important and challenging aspects that needed to be addressed

regarding the internal structure of matter.

Before 1897, people had the strong belief of fact that atoms were not only the building

blocks of matter but they were also indivisible. In 1897, the British physicist J.J. Thomson

in the Cavendish Laboratory at Cambridge University discovered the “corpuscles” which

were later termed as electrons. His venture into the interior of atoms and the resulting

discovery of electrons was one of the biggest milestones in the history of science. This

discovery of negatively charged electrons in the atom tremendously boosted the curiosity

of the scientists to know more and more about the inner structure of atoms. Then almost

14 years later, the discovery of nucleus followed. In 1911, Ernest Rutherford discovered

the nucleus, having observed the backward scattering of the alpha particles off a thin gold

foil. The quest continued to look for the interior of the nucleus and, eventually, protons

and neutrons were discovered. J. Chadwick won the Nobel prize for discovering the neu-

tron. The protons and neutrons constitute the nucleus and are termed nucleons. Once the

nucleons were discovered, the study of the properties of the nucleons lead to the further

understanding of their structures and as a result, the concept of quarks emerged for the first

time in 1964 when physicist Murray Gell-Mann [27] and George Zweig [28] independently

proposed quarks as the building blocks of the nucleons. The nucleons belong to the general

class called hadrons. Prior to the elementary quark model describing the formation of the

hadrons from the quarks, Gell-Mann [29] and Yuval Ne’eman [30] introduced a classification

scheme based on SU(3) symmetry, which placed the hadrons into families on the basis of
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spin and parity. The quark model was a way to generate this classification scheme [2].

The study of the structure of hadrons in terms of the quarks themselves is a different

and specific area of particle physics these days and it is referred to as hadronic physics.

Hadrons are further classified into baryons and mesons. Baryons are hadrons with three

constituent quarks and mesons are hadrons composed of a quark and an anti-quark. The

baryons are hadrons of 1/2 integer spin while the mesons are hadrons having integer spins.

The very first quark model postulated three types of quarks, each being a spin-1/2 particle:

up (u), down (d), and strange (s), with electric charges 2/3, -1/3 and -1/3 respectively.

Also in this model, a new degree of freedom was assigned to each quark called flavor. Even

though the elementary quark model, which is often referred to as the constituent quark

model, described the hadrons in terms of their properties such as spin, mass, charge etc.,

it was still considered just a mathematical representation. People were skeptical about

the real existence of quarks until a few inelastic electron-nucleon scattering experiments

were conducted. These experiments confirmed the physical identity of quarks. Nucleons

are composite structures consisting of point-like spin-1/2 particles having fractional charges

consistent with those of quarks. A comprehensive discussion on the key issues in hadronic

physics can be found in Refs. [31], [32].

1.2 The Early Electron Scattering Experiments

The very first electron scattering experiment that revealed the existence of quarks in a

hadron was performed at the Stanford Linear Accelerator Center (SLAC). The details of

the experiments can be found in Refs. [33], [34]. The usual electron scattering experiment

involves the incidence of a focused electron beam on a target and the detection of the scat-

tered electrons, yielding information about the structure of the target. The experiments

at SLAC used electrons scattered off a hydrogen target and the virtual photon1 acted as

a mediator of the electromagnetic interaction. The square of the four-momentum of the

virtual photon, denoted commonly by Q2, is a measure of the resolution of the experiment.

1The electron, being a charged particle, and the nucleon interact by electromagnetc force. This force is
carried by a mediator or an exchange particle called the virtual photon. In the electron scattering process,
it is not the incoming electron which probes the nucleon but the virtual photon which carries a fraction of
the momentum of the electron and transfers it to the nucleon.
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The high energy e−p inelastic scattering at SLAC was dedicated to investigate the electro-

magnetic structure and interactions of the proton. With incident energies from 7 to 17 GeV

at scattering angles of 6◦ to 10◦, cross sections of the scattered electrons were measured up

to a Q2 value of 7.4 GeV2/c2. The results of the experiment are shown in Fig. 1.1 where the

ratio of the differential cross section to the Mott cross section (scattering cross section from

a point particle) is plotted as a function of the momentum transfer squared (Q2) for a scat-

tering angle θ = 10◦. Data are shown for three different values of the invariant mass2(W)

as well as for the e− p elastic scattering.

Figure 1.1: σ/σMott as a function of Q2 for W = 2, 3, and 3.5 GeV at θ = 10◦.(Reproduced
from [2]).

As can be seen clearly, with an increase of the invariant mass W from 2 GeV to 3.5

GeV, the dependence of the ratio on Q2 gets weaker with respect to the elastic case.

Following these results, J. Bjorken postulated that the scattering cross sections, instead,

depend on a single variable (x) later named as Bjorken-x. The variable x is a dimentionless

quantity which is defined as x = Q2

2.M.ν where M is the mass of the target nucleon, ν is the

energy loss between the incoming and the scattered electrons and Q2 is the four momentum
2The invariant mass of a particle or a system of particles is a mathematical combination of the total

energy and momentum of the particle or the system of particles which is independent of the inertial frame
of reference. If the system is at rest, the invariant mass is the total energy of the system divided by c2 where
c is the velocity of light.
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transfer carried by the virtual photon as mentioned eariler. This independence of the cross

section on Q2 and the dependence on x is termed scaling [35] and will be discussed later.

This scaling behavior was then interpreted by Feynman, leading to the introduction of the

parton model which describes the proton to be composed of point-like particles called par-

tons at that time and later known as quarks. It turned out that the Quark Parton Model

enjoyed a great triumph and was a profound complement to the prevailing postulates by

Gell Mann et al. regarding the behavior of the quarks in explaining different properties of

the proton. However, as time passed by, new unexpected experimental results gradually

started demanding more explanations which required the refinement of the existing Quark-

Parton model or the definition of an improved theory which will be summarized in the next

section.

1.3 Quantum Chromodynamics : The Gauge Theory of Strong Interactions

The Quark-Parton model was successful in describing various aspects of the structure of

hadrons in terms of quarks, yet it cound not explain all the observed experimental results.

For instance, the model was not sufficient to interpret the missing momentum of the nucle-

ons. It was discovered experimentally that only half of the nucleon’s momentum came from

the constituent quarks. Another important aspect that drew attention to many physicists

was the nature of the binding of the quarks inside a nucleon. The quarks are bound and

confined very strongly in order to form the nucleon in such a way that realization of a

free isolated quark is unrealistic in practice. This situation is technically termed as quark

confinement. On the other hand, in the scattering process of electrons off a nucleon at

very high four momentum transfers (Q2), the quark inside the nucleon can behave like an

isolated particle which is probed by the virtual photon. This situation can be realized in the

deep inelastic scattering characterized by Q2>1 GeV2/c2 and W>2 GeV and referred to as

asymptotic freedom. In order to describe and support these observations, a general theory

was needed. The notion of quark confinement was addressed by assigning a new quantum

number color to the quarks which requires that they can not be isolated and observed di-

rectly. The situation of asymptotic freedom was explained by D. Gross, F. Wilczek, and D.

Politzer using non-abelian quantum field theory and finally this was followed by the intro-

duction of Quantum Chromodynamics (QCD). QCD is the theory of strong interaction that

was proposed to describe the binding of quarks and gluons together to form the hadrons.
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In a more technical language, it is a field theory of color interactions discussed extensively

in Refs. [36], [37], [38].

Following the formalism of Quantum Electrodynamics (QED), where an electromagnetic

coupling constant α determines the strength of the electromagnetic interaction, a strong

coupling constant αs can be introduced in QCD to determine the strength of the strong or

color interaction. Fig. 1.2 shows the running of αs as a function of Q. Asymptotic freedom

can be described by QCD because the coupling between the quarks is very weak at large

Q or at short distances. In this region, perturbation theory can be applied because αs is

small; αs can be used as a perturbative expansion parameter. On the other hand, at low

Q, as can be seen from the plot, αs is large and hence, perturbative QCD can not be used

to describe the confinement of quarks. Non-perturbative QCD should be able to address

confinement as a fundamental property. The lattice QCD [39] displays confinement in the

non-perturbative region; the confining potential between the quarks increases linearly with

the separation if the quark mass is made infinitely heavy.

Figure 1.2: Summary of measurements of αs as a function of Q where the curves represent
the QCD predictions for the combined world average value of αs. MZ is the rest mass of
the Z◦ boson. The full symbols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross filled square is based on lattice
QCD. The figure is reproduced from [3]. The details of the calculations and measuremnts
can also be found in [3].
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1.4 Spin of the Nucleon

The spin of the nucleon is one of the most exciting intrinsic properties the origin of which

has been the least known of all the other interesting properties. Numerous efforts have

been made in terms of theoretical model predictions as well as in the experimental frontiers

in order to understand the origin of the spin of the nucleon and the different contributing

factors to it. However, yet after more than two decades, the contributions to the spin of the

nucleon are only partially known. The spin structure of the nucleons can not be accessed

by any means with an unpolarized beam and an unpolarized target. Instead, in order to

probe the internal spin dynamics in a nucleon, polarized beams and polarized targets are

used.

The first ever polarized electron-polarized proton scattering measurements were conducted

at SLAC. The E80 and E130 collaborations measured the spin dependent asymmetries in

the inclusive3 deep inelastic scattering of longitudinally polarized electrons off a longitu-

dinally polarized proton target, aiming to measure the spin-dependent structure functions

of proton [40], [41]. Data were taken in a high Q2 range and a x region between 0.18 to

0.70. On the theoretical front, Eliis and Jaffe [42] predicted the contribution of the quarks’

spin to the nucleon spin, separated from the gluon spins and orbital angular momentum

contributions, to be ∼ 58% where they assumed that the sea quarks4 do not contribute

to the spin of the nucleon. In 1988, the EMC collaboration measured the spin asymmetry

in deep inelastic scattering of longitudinally polarized muons off longitudinally polarized

protons over a large x range, 0.01<x<0.7, and determined the spin-dependent structure

function g1 for the proton. The spin dependent structure function g1 is related to the dif-

ference between the probablility of finding the quarks whose spins are aligned parallel to

the spin of the nucleon and the probability of those whose spins are aligned anti-parallel to

that of the nucleon. In this case, the nucleon is longitudinally polarized, i.e., the spin of

the nucleon is parallel to the incoming electron beam. The result of the experiment was in

complete disagreement with what Ellis and Jaffe predicted in their calculations. The results

are explained in Refs. [43] and [44]. It was found that the contribution from the quarks to
3In case of inclusive scattering, only the scattered electrons are detected and nothing else. Other particles

produced in the reaction remain undetected.
4Sea quarks are virtual quark-antiquark pair which do not contribute to the quantum numbers of the

parent hadron.

6



the nucleon spin was rather small. It turned out that the majority of the nucleon spin is

not carried by the quarks which was the very first unexpected finding in the history of spin

physics and was often referred to as Spin Crisis. The EMC results were further confirmed

by a set of experiments at SLAC (SMC) and CERN (E142) for both the proton and the

neutron.

The surprising results of these experiments subsequently created great excitement and in-

terest among the theorists and they started thinking about different possible contributions

to the nucleon spin. The most probable candidates were the spin of the gluons (∆G), the

orbital angular momentum of the quarks (Lq) and the orbital angular momentum of the

gluons (Lg). Since the total angular momentum of the nucleon is always conserved, the spin

1/2 of the nucleon can be written as :

1
2

=
1
2

∆Σ + ∆G+ Lq + LG, (1.1)

where ∆Σ is the contribution only from the helicity5 of the valence and sea quarks. HER-

MES and COMPASS measured this contribution to a high precision and concluded that the

quark spin contribution to the nucleon spin is of the order of 30%. Different experiments

have been dedicated to measure the two contributions ∆Σ and ∆G during the last couple

of decades(Note Ref. [45] and the references in it). However, the possible contribution from

the angular momentum of quarks and gluons was still to be measured. Hence, the basic

question still remains : How is the nucleon spin distributed among all the contributions?

1.5 Transverse Spin: Transversity, Sivers Distribution and Collins Fragmen-

tation Function

So far we talked about the contribution of the quark spin to the nucleon spin given by

the distribution function g1 and usually denoted by ∆q which is already measured to a

very high precision. This is often called the helicity distribution. In order to interpret the

structure of the nucleon in terms of spin and momentum, three distribution functions or

näively three different probabilities have to be defined. These are the momentum distri-
5The helicity of a particle is defined as the projection of its spin onto its direction of momentum. The

helicity of a particle is said to be right handed if the direction of its spin is the same as the direction of its
momentum. On the other hand, if the particle has a spin which is aligned opposite to the direction of its
momentum, the helicity of the particle is said to be left handed.
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bution function q(x,Q2), the helicity distribution function ∆q(x,Q2) and the transversity

distribution function δq(x,Q2). They can be interpreted as follows:

• q(x,Q2) : The probability of finding the quarks carrying a fraction x of the nucleon

momentum within the nucleon. This is the unpolarized and spin independent distri-

bution function.

• ∆q(x,Q2) : The difference between the probabilities of finding the quarks in a longi-

tudinally polarized nucleon having their spins parallel and anti-parallel to the nucleon

spin.

• δq(x,Q2) : The difference between the probabilities of finding the quarks in a transver-

sly6 polarized nucleon having their spins parallel and anti-parallel to the nucleon spin.

The unpolarized distribution q(x,Q2) and the helicity distribution ∆q(x,Q2) have been

measured very well, but the measurement of the transversity distribution δq(x,Q2) is in its

very early stage. HERMES and COMPASS completed their proposed measurements of var-

ious single spin asymmetries with the motivation of extracting the transversity distribution

function using proton and deuterium targets. The existing results of these measurements

are discussed in chapter 2. However, at this moment only one global analysis has been per-

formed with the available data and the transversity distribution function is extracted [46].

The difference between the transversity distribution and the other two distributions is that

the transversity distribution function is a chiral odd7 object which can not be accessed in

inclusive deep inelastic scattering (DIS). Unlike the other two distributions, δq(x,Q2) does

not carry a probabilistic interpretation in the helicity basis. Due to its chiral odd nature,

it has not been measured so far in the DIS experiments as the strong and electromagnetic

interactions converse chirality8. In order to access to δq(x,Q2), another chiral odd object
6The term transverse here refers to the direction where the spin of the nucleon is aligned perpendicular

to the scattering plane in the reaction. Two configurations can be realized experimentally: the target spins
lying in the scattering plane and perpendicular to the incoming lepton beam and the target spins oriented
perpendicular to the scattering plane containing the incoming lepton beam.

7See the definition of chirality
8Chirality of a particle is a more abstract concept in relation to its helicity. The helicity of a particle

is the projection of its spin in the direction of its momentum. Hence, if the particle has its spin aligned
(anti-aligned) along the direction of its momentum, its helicity is positive (negative). The chirality of a
particle is same as the helicity in the massless limit i.e. chirality and the helicity are the same for a massless
particle. For a particle having non-zero mass, the chirality basis is a linear combination of the helicity states.
Specifically when a distribution (fragmentation) function is chiral odd, it involves the flipping of the helicities
of both the quark and the nucleon during the scattering process. In other words, the initial and the final
states do not preserve chirality.
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(the Collins Fragmentation Function defined below) has to be measured together with the

transversity distribution so that the chirality is conserved during the process. This can

be achieved by detecting one of the hadrons produced in the final state of the scattering

process which is termed as semi-inclusive deep inelastic scattering (SIDIS). The process can

be expressed as :

e+N −→ e′ + h+X, (1.2)

where the incoming electron e is scattered off the nucleon N and the final scattered electron

e′ together with the hadron h are detected. X denotes the undetected final state. The

electron in this case is specific to our experiment. In SIDIS, in principle it can be any

leptons such as electrons, muons, etc. Another important distribution function named the

Sivers distribution function can be accessed in SIDIS. The Sivers distribution function is

believed to be associated with the angular momentum of the quarks. However, the exact

relation between the angular momentum of quarks and the Sivers function is still under

investigation [47]. Hence, in the near future the study of these distribution functions will

be expected to shed some light on the missing part of the spin contribution to the nucleon

as well as on many other interesting properties.

The SIDIS experiment E06010 in Hall A at Jefferson Lab which aimed at measuring the

SSA on a polarized 3He target finished acquiring data almost a year ago. It is the first

experiment to use the polarized 3He as a neutron target to measure the SSA in the x range

0.13<x<0.41 with Q2 = 1.31 → 3.1 GeV2/c2. In this experiment, the SSA is measured in

the electroproduction of π− on the transversely polarized 3He target. The expected SSA

is attributed to two independently contributing effects: the Collins effect and the Sivers

effect. The contribution of the Collins effect to the measured SSA is associated with the

chiral odd Collins fragmentation function9 convoluted with the transversity distribution

function. Similarly, the contribution of the Sivers effect is associated with the Sivers distri-

bution function convoluted with the spin-independent fragmentation function. The näive

probabilistic interpretations of the Collins and Sivers functions are given below:

• Sivers distribution function : The Sivers distribution function gives the probability

of finding an unpolarized quark in a transversely polarized nucleon. It relates the
9The fragmentation function is related to the probability of formation of the final state hadron from the

quarks in the nucleon during the scattering process.
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transverse momentum of the quarks to the spins of the nucleon and hence it is called

the Transverse Momentum Dependent (TMD) distribution function [48].

• Collins fragmentation function : The Collins fragmentation function gives the prob-

ability of polarized quarks fragmenting into unpolarized hadrons. It describes the

correlation between the spin of the struck quark and the transverse momentum of the

produced hadron [49].

While HERMES and COMPASS presented their results on Single Spin Asymmetry (SSA)

on transversely polarized proton and deuteron target, E06010 in Hall A at Jefferson Lab

completed its data taking from November 2008 to February 2009 on a transversely polarized
3He target. As mentioned earlier, this is the first experiment on polarized 3He to study the

SSA on neutron. The single spin asymmetry of the neutron and the extraction of the

Collins and Sivers moments10 in the electroproduction of π− from the data is presented

in this thesis. The inclusive single spin asymmetry results for different particles are also

presented.

1.6 Outline of the Thesis

The theory and formalism of inclusive and semi-inclusive deep inelastic scattering in terms

of the leptonic and hadronic tensors is discussed in chapter 2. In addition, a detailed formal-

ism of the transverse degrees of freedom of the nucleon with emphasis on the transversity

distribution function and the Sivers distribution function as well as the Collins fragmenta-

tion function is presented. Chapter 3 is dedicated to describe the experimental set up for

E06010. The different detector packages and the beam line components in the experimental

hall are addressed in this chapter. Chapter 4 deals with the detailed description of the po-

larized 3He target and the polarimetry analysis. The detector calibrations and other related

analysis are extensively discussed in chapter 5. The asymmetry analysis, the extraction of

Collins and Sivers moments and the systematic studies are presented in chapter 6. The

conclusions and the outlook are presented in chapter 7.

Copyright c© Chiranjib Dutta 2010
10The SSA measured is contributed by the Collins and Sivers effects. Each of these contributions is realized

with the convolution of a distribution function with a fragmentation function. These convolutions remain
as they are and no separation can be done experimentally. The so called moments are measured. Hence,
for instance, the Sivers moment refers to the convolution of both the Sivers distribution function and the
unpolarized fragmentation function integrated over the transverse momentum of the hadrons.
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CHAPTER 2: DEEP INELASTIC SCATTERING AND TRANSVERSITY

The unpolarized and polarized inclusive inelastic lepton scattering off a hadron result in a

number of interesting and surprising aspects of the behavior of the partons inside a nucleon.

However, the transverse polarization distributions of the nucleon can not be probed with

the inclusive deep inelastic processes. Semi-inclusive deep inelastic scattering (SIDIS) has

been adopted as one of the powerful tools to access the transverse degrees of freedom in the

nucleon where, as mentioned earlier, one of the final-state hadrons is detected together with

the scattered electron. The basic formalism of the deep inelastic scattering (DIS) process

and the semi-inclusive deep inelastic scattering (SIDIS) process as an extension of it will be

discussed in this chapter. The transversity and Sivers distribution functions and the Collins

fragmentation function and their properties in terms of contributions to the observed single

spin asymmetry in the n↑(e,e′π−)X reaction are also addressed.

2.1 Inclusive Deep-Inelastic Scattering (DIS)

A typical inclusive DIS process involves an incoming beam of leptons scattered off a hadronic

target and the scattered leptons get detected. Here, I will focus only on the process with a

fixed hadronic target and a continuous beam of electrons as the incoming leptons. Consider

an electron with an initial energy E and momentum ~k scattering off a fixed target which will

be treated as a nucleon of rest mass M . In other words, the four-momenta of the incoming

and the outgoing electrons are k = (E,~k) and k′ = (E′,~k′), respectively, while that of the

initial target nucleon is P = (M,~0). The electron interacts with the nucleon via a virtual

photon having a moderate four-momentum squared (Q2) exchanged to the nucleon. Thus

having absorbed the photon momentum, the target nucleon breaks apart and produces a

final state X of hadrons. In inclusive measurements, the final state X of the hadrons is left

undetected while only the scattered electron is detected. The schematic of the inclusive

DIS process with one photon exchange is shown in the Fig. 2.1. The kinematic variables of

a DIS process are summarized in Table 2.1.

The two parameters which characterize the scattering process are Q2 and x. As men-

tioned earlier, Q2 is the four-momentum transfer to the target carried by the virtual photon

and defines the spatial resolution of the process. The larger the Q2 the better the resolu-

tion to probe the inner structure of the nucleon and in the range of deep inelastic scattering
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Figure 2.1: Schematic of Deep Inelastic Scattering (DIS) process. The leptonic tensor Lµν
and the hadronic tensor Wµν are described in the text in subsection (2.1.1).

where Q2>1 GeV21, the resolution is small enough to get deeper insight into the nucleon.

The Bjorken x is a measure of the fraction of the nucleon’s momentum carried by the struck

quark at the photon virtuality Q2. Bjorken introduced with this variable a property known

as scaling (introduced in chapter 1) which demands that the structure functions are inde-

pendent of Q2 and are functions of x only. The invariant mass of the final hadronic system

can be written as :

W 2 = M2 + 2Mν −Q2 = M2 + 2P · q −Q2 (2.1)

The invariant mass of the final state X should be either larger (in case of deep inelastic

scattering) than or equal (in case of elastic scattering) to the mass of the nucleon. Hence,

in general,

W 2 ≥M2 (2.2)

⇒M2 + 2P · q −Q2 ≥M2 (2.3)

⇒ Q2

2P · q
≤ 1 (2.4)

⇒ x ≤ 1 (2.5)

On the other hand, if we look into the definition of x, it represents a momentum fraction

of the nucleon and it depends on the energy loss of the electron or the energy transferred
1c = 1 convention is adopted in the formalism
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Table 2.1: Important kinematic variables in DIS. Here the mass of the incoming electron is
neglected and a fixed target is assumed. Also, ~ = c =1 is adopted.

E energy of the incoming electron
P=(M,0,0,0) four-momentum of the target
(θ,φ) (polar,azimuthal) scattering angle in the lab frame
E′ energy of the outgoing electron
k=(E,0,0,E) four-momentum of the incoming electron
k′=(E′,E′sinθcosφ,E′sinθsinφ,E′cosφ) four-momentum of the outgoing electron
q=k-k′ four momentum transfer
ν=E-E′=P ·q

M energy transfer
y = ν

E = P ·q
P ·k fractional energy transfer

Q2 = -q2 = 4EE′sin2 θ
2 squared invariant mass of the virtual photon

x = Q2

2Mν = Q2

2P ·q Bjorken scaling variable
W2 = (P+q)2 = M2+2Mν-Q2 squared invariant mass of the final hadronic system

to the nucleon. Also, since Q2 is always positive, the value of x can at least be 0 , but not

negative. Hence, the physically allowed range of x is:

0 ≤ x ≤ 1 (2.6)

In the special case when x=1, W 2=M2 and it corresponds to the case of elastic scatter-

ing. Thus, x is a measure of the inelasticity of the scattering process. The deep inelastic

scattering regime is defined by Q2 >1 GeV2 and W2 > 4 GeV2 to avoid the resonance region.

In case of semi-inclusive deep inelastic scattering (SIDIS), one of the hadrons in the fi-

nal state is detected in coincidence with the scattered electron. In E06010 in Hall A at

Jefferson Lab, pions and kaons were detected which were coincident with the scattered elec-

trons off a polairzed 3He target. In this case, three additional independent variables can

completely define the kinematics. These are summarized in Table 2.2.

2.1.1 General Formalism for Deep Inelastic Cross Section

The general expression for the differential cross section of the deep inelastic scattering

explained above can be written in terms of the leptonic and hadronic tensors as follows :

d2σ

dΩdE′
=

α2

2Mq4

E′

E
LµνW

µν , (2.7)
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Table 2.2: The three independent variables φh, z, and Ph, in addition to x and Q2, in terms
of which the cross section in SIDIS can be expressed.

Ph = (Eh,~ph) four momentum of the detected outgoing hadron
φh azimuthal angle of the hadron plane w.r.t. scattering plane
z = P ·Ph

P ·q = Eh
ν momentum fraction carried by the outgoing hadron

Ph⊥ =
~Ph×~q
~q the transverse momentum of the hadron w.r.t. the virtual photon

where dΩ = dcosθdφ is the solid angle which covers the detection of the scattered electrons

in the energy range (E′, E′ + dE′) in the laboratory frame. Lµν is the leptonic tensor de-

scribing the interaction at the leptonic (in this case electron) vertex whereas the hadronic

tensor Wµν depicts the interaction at the hadronic vertex. α is the electromagnetic coupling

constant, and q is the four-momentum of the virtual photon as defined earlier.

The leptonic tensor Lµν

Lµν can be defined in terms of the γ matrices and spinors following the conventions of [50]

as follows :

Lµν(k, s; k′, s′) = [ū(k′, s′)γµu(k, s)]∗[ū(k′, s′)γνu(k, s)] (2.8)

Here, k and k′ represent the four momenta of the incoming lepton and the scattering

lepton respectively. However, the spinors here are normalized to 2E unlike described in

Ref. [50]. Now the leptonic tensor can be decomposed into two parts: the symmetric part

S in (µ, ν) and the anti-symmetric part A in (µ, ν) [51]. Hence,

Lµν(k, s; k′, s′) = Lµν
S(k; k′) + iLµν

A(k, s; k′)

+ L′µν
S(k, s; k′, s′) + iL′µν

A(k, ; k′, s′) (2.9)

Since we do not measure the polarization of the scattered electron in the process, we can

sum over s′ and for the unpolarized case, in addition to the summation over the final spins

s′, the initial spins of the electrons can be averaged out and it results in only the symmetric

part of the leptonic tensor (= 2LSµν). On the other hand, in case of the polarized cross

section, the above equation still has the spin-dependent, anti-symmetric part and, hence,
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one can write the leptonic tensor without averaging the spins of the incoming electrons as :

Lµν(k, s; k′) = Lµν
S(k; k′) + iLµν

A(k, s; k′) (2.10)

Calculation of the trace of Eq.(2.8) yields :

LSµν(k; k′) = kµk
′
ν + k′µkν − gµν(k · k′ −m2

e) (2.11)

LAµν(k, s; k′) = meεµνγδs
γ(k − k′)δ, (2.12)

where me is the mass of the electron, gµν is the usual metric tensor, and εµνγδ is the Levi-

Civita tensor defined in Appendix A.

The hadronic tensor Wµν

The hadronic tensor Wµν is the interesting part in the cross section since it reveals the

hadronic structure comprehensively. However, it is non-trivial to calculate the hadronic

tensor as the non-perturbative effects in the strong interaction can not be explained by

QCD. It can be expressed in terms of the structure functions while preserving the parity

and time reversal invariance of the interaction. Similar to the leptonic tensor, the hadronic

tensor can also be decomposed into a symmetric (S) and an anti-symmetric (A) part :

Wµν(q;P, S) = WS
µν(q;P ) + iWA

µν(q;P, S), (2.13)

where S is the spin of the target nucleon. The spin-independent and spin dependent parts

are given by Eqs.(2.14) and (2.15) :

1
2M

WS
µν(q;P ) =

(
−gµν +

qµqν
q2

)
W1(P · q, q2)

+
[(
Pµ −

P · q
q2

qµ

)(
Pν −

P · q
q2

qν

)]
W2(P · q, q2)

M
(2.14)

1
2M

WA
µν(q;P, S) = εµνγδq

γ

[
MSδG1(P · q, q2)

+
(

(P · q)Sδ − (S · q)P δ
) G2(P · q, q2)

M

]
(2.15)

In the deep inelastic region, when Q2 →∞ and x = Q2

2Mν is fixed, the inelastic form factors

15



can be parametrized by the dimensionless structure functions that depend on x and Q2.

MW1(P · q, q2) ≡ F1(x,Q2) (2.16)

νW2(P · q, q2) ≡ F2(x,Q2) (2.17)
(P · q)2

ν
G1(P · q, q2) ≡ g1(x,Q2) (2.18)

ν(P · q)G2(P · q, q2) ≡ g2(x,Q2) (2.19)

The structure function F1(x,Q2) and F2(x,Q2) are called the unpolarized structure func-

tions since they do not depend on the spin of the nucleon. The other two structure functions,

g1(x,Q2) and g2(x,Q2), are spin-dependent and hence termed as polarized structure func-

tions. These structure functions are Lorentz invariant and can be measured experimentally.

The unpolarized structure functions can be measured using an unpolarized target and an

unpolarized beam. On the other hand, both beam and target need to be polarized in order

to access the polarized structure functions. The spin-independent and spin-dependent parts

of the hadronic tensor can now be expressed in terms of these structure functions as follows

:

WS
µν(q;P ) = 2

(
−gµν +

qµqν
q2

)
F1(x,Q2)

+
2

P · q

[(
Pµ −

P · q
q2

qµ

)(
Pν −

P · q
q2

qν

)]
F2(x,Q2) (2.20)

WA
µν(q;P, S) = 2Mεµνγδq

γ

[
Sδg1(x,Q2) +

(
Sδ − (S · q)

P · q
P δ
)
g2(x,Q2)
P · q

]
(2.21)

Thus with the symmetric and anti-symmetric parts in both the leptonic and hadronic ten-

sors, we can write the general form of the cross section in the DIS process as :

d2σ

dΩdE′
=

α2

2Mq4

E′

E

[
LSµνW

µνS − LAµνWµνA
]

(2.22)

2.1.2 The Unpolarized Spin-independent DIS Cross Section

In case of spin-independent deep inelastic cross section, Eq.(2.22) yields only the spin in-

dependent symmetric part when all the initial spin states of the scattering process are

averaged. The cross section in terms of the unpolarized structure functions is :

d2σU
dxdy

=
4πα2

s

s(xy)2

[
xy2F1(x,Q2) +

(
1− y − M2x2y2

Q2

)
F2(x,Q2)

]
(2.23)
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where
√
s is the center-of-mass energy of the system. The unpolarized structure functions

clearly represent the deviation of the cross section from scattering off a point-like particle.

The scattering off a point-like particle is the pure elastic scattering and the modification of

the scattering cross section in Eq.(2.23) in terms of F1 and F2 in the inelastic case is due

to the high energy transfer of the virtual photon into the nucleon. Thus, these unpolarized

structure functions are the most relevant tools to know the electric and magnetic charge

distributions of the nucleon. Different experiments were conducted in order to measure

these functions to a very high precision and these are known for over half a century now.

2.1.3 The Polarized Spin-dependent DIS Cross Section

In case of the polarized beam and polarized target, both the spin dependent parts in the

leptonic and hadronic tensors come into play as well. With all the terms in both the sym-

metric and anti-symmetric parts in the respective tensors contributing to the cross section,

one can not access the spin dependent contribution directly from the cross section. Hence,

a cross section difference is usually formed between two different target spin orientations.

The target can be polarized in two ways : longitudinal and transverse with respect to the

incoming beam. In both the cases, the cross sections can be measured with the target spins

aligned parallel as well as anti-parallel to the beam. Thus, taking the difference of the cross

sections between the two target spin states cancels the unpolarized terms and isolates the

spin dependent terms. Depending on the direction of the target polarization, two distinct

cases arise:

Cross section for a longitudinally polarized target

Consider the scattering of a longitudinally polarized lepton beam off a target which is

polarized along the direction of the beam. The cross section difference is given by :

d3σ→⇒

dxdydφs
− d3σ→,⇐

dxdydφs
=

4α2
s

sxy

[(
2− y − 4M2x2y2

2Q2

)
g1(x,Q2)− 4M2x2y

Q2
g2(x,Q2)

]
, (2.24)

where → represents the helicity or the spin orientation of the leptons and ⇒ (⇐) denotes

the orientation of target spins aligned (anti-aligned) with respect to the leptons. φs is the

azimuthal angle of the target spin vector with respect to the electron beam. As can be

seen from the expression, the structure function g2 is suppressed by a factor of M2

Q2 . This

difference in the cross section is used to measure the structure function g1.
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Cross section for a transversely polarized target

Now consider a scattering of a longitudinally polarized beam of leptons off a target which is

polarized perpendicular with respect to the scattering plane containing the incoming beam.

The cross section difference can be expressed as :

d3σ→⇑

dxdydφs
− d3σ→⇓

dxdydφs
=

4α2
s

sxy

√
1− y − 4M2x2y2

2Q2

[
2Mx

Q
g1(x,Q2)

+ 2g2(x,Q2)
]

cosφs (2.25)

Here, the two target spin orientations are represented by ⇑ and ⇓ while the lepton spin is

indicated by →.

2.1.4 Experimental Measurements of Structure Functions

There have been a considerable number of experiments using different targets and beams

dedicated to measure the unpolarized and the polarized structure functions. Even though

a very explicit dependence of the different cross sections on the structure functions are

realized in theory as we have seen in the previous subsections, it is extremely non-trivial

experimentally to access each of them individually. Hence, usually the experimental results

are presented in terms of cross section ratios dependent on virtual photon polarization (for

F1 and F2) and asymmetries dependent on the target spin polarization (for g1 and g2). It is

worthwhile to mention a few words here to show how these structure functions are realized

in terms of the measured quantities in the experiments.

For the unpolarized structure functions, instead of separating them individually, F2(x,Q2)

and a combination of F1(x,Q2) and F2(x,Q2) known as R are presented as experimental

results. R is defined as the ratio of the photo-absorption cross sections of longitudinally (L)

and transversely (T) polarized virtual photons:

R =
σL(x,Q2)
σT (x,Q2)

≡ (1 +
4M2x2

Q2
)
[
F2(x,Q2)

2xF1(x,Q2)

]
− 1, (2.26)

where σL(x,Q2) (σT (x,Q2)) represents the photo-absorption cross section for longitudinal

(transverse) photons.
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On the other hand, the polarized structure functions g1 and g2 are often accessed in the

measurements of various asymmetries. The term asymmetry here refers to the ratio of

the polarized cross section difference to the unpolarized cross section. For a longitudinally

polarized target, the asymmetry measured can be defined as :

A|| ≡
d3σ→⇒

dxdydφs
− d3σ→⇐

dxdydφs
d2σU
dxdy

, (2.27)

where the numerator and the denominator are given by Eq.(2.24) and Eq.(2.23), respec-

tively. Similarly, for a transversely polarized target, the asymmetry is :

A⊥ ≡
d3σ→⇑

dxdydφs
− d3σ→⇓

dxdydφs
d2σU
dxdy

, (2.28)

where the numerator is given by Eq.(2.25). Now A|| and A⊥ can be related to the virtual

photon-nucleon asymmetries A1 and A2 as follows :

A|| = D(A1 + ηA2) (2.29)

A⊥ = d(A2 + ξA2), (2.30)

where the photon asymmetries and the other kinematic factors are defined below :

A1 =
g1 − 4M2x2

Q2 g2

F1
(2.31)

A2 =
2Mx

Q

[
g1 + g2

F1

]
(2.32)

D =
1− (1− y)ε

1 + εR
(2.33)

ε = 1/[1 + 2(1 +
[

4M2x2

Q2

]−1

)tan2(
θ

2
)] (2.34)

η =
(ε
√
Q2)

E − E′ε
(2.35)

ξ =
η(1 + ε)

2ε
(2.36)
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d = D

√
2ε

(1 + ε)
, (2.37)

where θ is the polar angle of the scattered lepton and ε is usually called as the virtual

photon’s transverse polarization.

Measurements of both A|| and A⊥ can be used to extract the values of g1 and g2 directly.

However, most of the experiments were dedicated to the measurement of A|| and only g1

was reported neglecting the contribution from g2. However, g2 has been measured and a

few of the important measurements of g2 in Jefferson Lab are summarized in [52].

Among the previously conducted experiments, the ZEUS collaboration and the H1 collab-

oration at HERA measured F2 of the proton in the deep inelastic e+P scattering. Between

1970 and 1985, a series of eight experiments at SLAC acquired data in deep inelastic e− p

and e − d scattering and reported F2 values of the proton as well as of the deuteron. The

BCDMS collaboration used the deep inelastic scattering of muon off a hydrogen target and

presented the F2 of the proton. Other measurements on proton and deuteron include the

measurements by E665 collaboration and the New Muon Collaboration. All these results

for protons and the deuterons are shown in Fig. 2.2 and Fig. 2.3.

The polarized g1 for protons and deuterons have been reported by various measurements,

viz, the Spin Muon Collaboration (SMC) [53], [54], HERMES [55], the E155 collabora-

tion [56], [57], the E154 collaboration, the E142 collaboration, and the E143 collaboration

( [58]) while the first result of polarized g2 was published by E155 collaboration [59] for both

proton and deuteron. The SMC at CERN was involved in a very high energy muon (190

GeV) deep inelastic scattering while the E155 collaboration at SLAC opted for electron

scattering off a polarized deuteron target. Measurements of g1 and g2 in Jefferson Lab are

presented in [52] and the references therein. Figure 2.4 on the next page shows the world

data of the polarized structure function g1.
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Figure 2.2: The world data on the spin independent proton structure function F2 [4]. The
error bars shown in the plot are the combined statistical and systematic errors in quadrature.
In the plot F2 is multiplied by 2ix where ix is the number of x bins ranging from ix =1 to
ix = 28 (corresponds to 0.85< x <0.00006).
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Figure 2.3: The world data on the spin independent deuteron structure function F2 [4].
The error bars shown in the plot are the combined statistical and systematic errors in
quadrature. In the plot F2 is multiplied by 2ix where ix is the number of x bins ranging
from ix =1 to ix = 29 (corresponds to 0.85< x <0.0009).
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Figure 2.4: The world data on the spin dependent structure function g1 [4].

2.2 Quark Parton Model (QPM) and Quantum Chromodynamics (QCD)

The Quark Parton Model (QPM) was introduced well before the period when the theory of

Quantum Chromodynamics (QCD) started enjoying its triumph [60]. The basic hypothesis

of the näıve QPM is when the energy and the momentum of the interacting virtual photon is

very high, it interacts with the constituents of the nucleons incoherently and the constituents
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are quasi-free. The fundamental assumption is that with large enough four momentum

transfer squared (Q2), the virtual photon can resolve the inner structure of the nucleon.

In this case, the constituents of the nucleon can be treated as a frozen collection of point-

like particles called partons. This follows from the fact that the time scale defining the

interaction among the point-like constituents varies as 1√
Q2

and in the limit Q2 →∞, the

time will be much less than the typical time scales of the interactions among the partons.

This is sometimes referred to as Impulse Approximation. This näıve parton model could

reasonably explain the weak dependence of F1 and F2 on Q2. The electron scattering in the

parton model can be viewed as interaction of the virtual photon with effectively massless

partons moving with a very high momentum. The momentum of a parton can in general be

expressed as p = xpz+pT where x is the ratio of parton’s z-component of momentum to that

of the nucleon and pz and pT are the longitudinal and transverse components of the parton’s

momentum with respect to the nucleon respectively. However, in this momentum frame

(commonly known as infinite-momentum frame) where the momentum of the nucleon itself

and the parton are considered to be very high, pz →∞ and one can neglect the transverse

component pT as well as the parton and target masses. Hence, the four momentum of each

parton can be written as pi= xiP where P is the nucleon momentum. In this situation,

the nucleon can be thought of a group of collinear partons. Fig. 2.5 shows the nucleon in

the infinite momentum frame imagined to be a beam of partons moving with a very high

velocity. The index i represents the different partons (quarks) with their respective charges.

Hence, a parton momentum distribution fi(x) can be defined as the probability of carrying

a momentum fraction x of the the parent nucleon P by the struck parton i such that:∑
i

∫
dxxfi(x) = 1, (2.38)

where i is the sum over all the partons.

In this formalism, the deep inelastic scattering of the lepton can be treated as the

elastic scattering off a parton inside the nucleon where the virtual photon is absorbed by

the respective parton. This is shown in Fig. 2.6. The absorption of the photon and the

mass-shell requirement of the final quark yields :

(P + q)2 = 0 (2.39)

Now let us go back to Eq.(2.38) where the parton momentum distribution fi(x) was

introduced. In the QPM, the properties of the nucleon are defined in terms of the parton
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Figure 2.5: Partons in the nucleon carrying a momentum fraction x of the nucleon viewed
collectively as a beam.

Figure 2.6: Deep inelastic scattering interpretation in QMP.

distribution function which is nothing but the probabilistic interpretation of fi(x) as men-

tioned earlier. Attributing the more usual nomenclature to the interpretation, let us denote

qi(x)(q̄i(x)) as the number density of a quark (anti-quark) of flavor i carrying a momentum

fraction x of the nucleon. Then the unpolarized structure function F1(x) can be expressed

as the charge-weighted sum of the quark and anti-quark flavor i :

F1(x) =
1
2

∑
i

e2
i[qi(x) + q̄i(x)], (2.40)

where ei is the charge of the quark.

If the nucleon is longitudinally polarized with respect to the incoming lepton, then the

spin-dependent structure function g1(x) is given by :

g1(x) =
1
2

∑
i

e2
i[∆qi(x) + ∆q̄i(x)] (2.41)

and

∆q(x) = q+(x)− q−(x) (2.42)
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q+(x) and q−(x) are the number densities of quarks with spins aligned and anti-aligned,

with respect to the longitudinal spin direction of the nucleon.

The other unpolarized structure function, F2, can be extracted from the relation expressed

in Eq.(2.26). In case of longitudinally polarized photons, the photo-absorption cross section

vanishes which results in R→0. Neglecting the small contribution from the 4M2x2

Q2 term in

the limit Q2 →∞, Eq.(2.26) yields :

F2(x) = 2xF1(x) (2.43)

This is known as the Callan-Gross relation [61]. However, the spin-dependent structure func-

tion g2(x) can not be interpreted directly in the simple QPM as it involves the transverse

momentum distribution of quarks. In order to understand g2(x) more comprehensively, one

has to rely on the operator product expansion (OPE) method which is outside the scope of

this thesis.

Using the Callan-Gross relation and the definition of F1(x), the structure function F2(x)

for neutron can be written in terms of the valence and the sea quarks. The neutron consists

of one u- quark and two d- quarks. Denoting these valence quark densities as u(x) = u and

d(x) = d, one can explicitly write :

Fn2 = x[(
2
3

)2u+ (−1
3

)2d+ (
2
3

)2(us + ūs) + (−1
3

)2(ds + d̄s) + (−1
3

)2(ss + s̄s)], (2.44)

where subscript s represents the sea quark and anti-quark densities for the flavors up (u),

down (d), and strange (s). Now assuming uniform sea quark-antiquark densities, i.e. us =

ūs = ds = d̄s = ss = s̄s = S,

Fn2 = x[
1
9

(u+ 4d) +
4
3
S] (2.45)

Similarly for proton,

F p2 = x[
1
9

(4u+ d) +
4
3
S] (2.46)

Here the isospin property of the nucleons is used where the following relations for the

valence quarks hold :

up(x) = dn(x) = u(x) (2.47)

un(x) = dp(x) = d(x) (2.48)
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Spin Crisis

One of the most interesting discoveries by the European Muon Collaboration (EMC) was

the Spin Crisis. The spin dependent structure function g1(x) expressed in Eq.(2.41) can be

expressed as a linear combination of quark densities which undergo transformation proper-

ties under the group of flavor transformation SU(3) [62] :

g1(x) =
1
9

[
3
4

∆q3 +
1
4

∆q8 + ∆Σ], (2.49)

where ∆q3 and ∆q8 are the third component of the spin triplet and the eighth component

of the SU(3) octet respectively. ∆Σ is the flavor singlet.

The first moment of ∆Σ, which is related to the quark-antiquark spin contribution to the

spin of the proton, is defined as :

a◦ =
∫ 1

0
dx∆Σ (2.50)

Now in non-relativistic case, a proton would be expected to have its spin solely contributed

by all the quarks and anti-quarks and hence one might expect a◦ to be ∼1. However, as

mentioned earlier, Ellis and Jaffe [42] predicted a value of 0.59 of this contribution by taking

into account the non-relativistic nature of the dynamics and neglecting the contribution from

the strange quarks in SU(3) framework. But the EMC measurements revealed [43] :

a◦ ≈ 0 (2.51)

This was the first major breakthrough in the history of spin physics declaring the unex-

pectedly small contribution of the quark-antiquark spins to the spin of the proton. This is

known as the Spin Crisis in the QPM.

2.2.1 Gluonic Interaction in QPM

QCD emerged as a powerful and the only theory of strong interaction that had provided a

satisfactory explanation of the observed experimental results at that time by introducing

the concept of gluons and their interaction with quarks inside the nucleon. Thus, the

theory of QCD successfully interpreted different experimental results including the famous

spin crisis and the missing nucleon momentum contribution. The original parton model

completely ignores the interaction among the partons and hence the leading contribution
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to the deep inelastic scattering cross section in the näıve parton model is O(α) where α

is the electromagnetic coupling constant. However, QCD introduces the color charge and

postulates that the color interactions are a copy of the electromagnetic interactions, having

α replaced by αs , the latter being termed as the strong coupling constant introduced in

chapter 1. The dynamical role of gluons leads to the further contributions such as O(ααs)

as corrections to the deep inelastic cross section. The physical meaning of this correction

can be understood by picturing the quark radiating a gluon before or after it gets struck

by the virtual photon as shown in the Fig. 2.7.

Figure 2.7: The O(ααs) correction due to the gluon radiated by a quark.

Once the gluons are introduced in the QPM, the missing momentum contribution to the

nucleon has been trivially accounted for and the spin crisis has been resolved very partially

by assigning part of the contribution from the gluon spins. To be more specific, in the

Bjorken limit there exits an anomalous gluonic contribution to a◦ in Eq.(2.50) and hence

the same can be written as :

a◦ =
∫ 1

0
dx∆Σ− 3

αs(Q2)
2π

∫ 1

0
dx∆G, (2.52)

where the second term represents the gluon contribution ( [63], [62]).

Thus, the main modifications to the original QPM in the framework of QCD involve the

introduction of gluonic interactions and the contribution of the gluon polarization to g1(x).

Another potential impact is the evolution equations which introduce a very gentle loga-

rithmic dependence of the structure functions on Q2. The Q2 evolution of the parton

distribution functions is given by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [62], [64], [65], [66]:

dq(x,Q2)
dlnQ2

=
∫ 1

x

dx′

x′

[
q(x′, Q2) · Pqq(

x

x′
) +G(x′, Q2) · PqG(

x

x′
)
]

(2.53)

dG(x,Q2)
dlnQ2

=
∫ 1

x

dx′

x′

[
G(x′, Q2) · PGG(

x

x′
) +

∑
q

q(x′, Q2) · PGq(
x

x′
)

]
, (2.54)
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where P are the splitting functions2 calculated perturbatively. Similar equations can be

found for the polarized densities ∆q(x,Q2) and ∆G(x,Q2).

2.3 Quark-quark Correlation Matrix in the QCD Improved QPM

The QCD improved QPM introduces the quark-quark correlation matrix3 which correlates

the quarks and anti-quarks inside the nucleon. The handbag diagram of DIS process is

shown in Fig. 2.8.

Figure 2.8: The handbag diagram for the DIS process involving the quark-quark correlation
function Φ. Here, P and S are the momentum and the spin of the nucleon respectively in the
initial state. q is the four momentum transfer and p represents the initial four momentum
of the quark.

The hadronic tensor in this case can be expressed as [5] :

Wµν =
∑
i

ei
2

∫
d4p

(2π)
δ((p+ q)2)Tr[Φγµ(/p+ /q)γν ], (2.55)

where ei is the fractional electric charge of the struck quark and γµ are the Dirac matrices.

The matrix element Φ is called the quark-quark correlation matrix describing the quark

field between the initial nucleon state |P, S〉 and the remnant |X〉, and is defined as :

Φi,j(p, P, S) =
∫
d4ξeip·ξ〈P, S|ψ̄j(0)ψi(ξ)|P, S〉, (2.56)

2A splitting function represents the probability of radiating a quark or gluon by a quark or gluon and
converting into another quark or gluon. For instance, the splitting function Pqq′(

x
x′ ) gives the probability

that the quark q′ radiates a gluon and converts to the quark q carrying a fraction x
x′ of the momentum of

quark q′.
3In quantum field theory, the relation between two states can be realized through the matrix element

computed by inserting a product of operators connecting the two states. The correlation matrix element,
thus computed, is called the correlation function.
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where the integration is performed over all possible separations ξ of the ith component of

the quark spinor ψi, i and j being the Dirac indices. The matrix Φ satisfies few relations

based on the properties of hermiticity, parity and time-reversal respectively as follows [5] :

Φ†(p, P, S) = γ0Φ(p, P, S)γ0 (2.57)

Φ(p, P, S) = γ0Φ(p̃, P̃ ,−S̃)γ0 (2.58)

Φ∗(p, P, S) = γ5CΦ(p̃, P̃ , S̃)C†γ5 (2.59)

Here C = iγ2γ0 and p̃µ = (p0,−~p). Eq.(2.59) corresponds to the time-reversal property

which is one of the most important aspect in the phenomenology of transverse polarization

distributions. Now in the basis of Dirac matrices,

Γ = [1, γµ, γµγ5, iγ5, iσ
µνγ5], (2.60)

where σµν = i
2 [γµ, γν ], the correlation matrix can be, in general, decomposed as follows:

Φ(p, P, S) =
1
2

[
S1 + Vµγµ +Aµγ5γ

µ + iP5γ5 +
1
2
iTµνσµνγ5

]
(2.61)

The quantities in the above equation, i.e. the scalar S, the vector Vµ, the axial-vector Aµ,

the tensor Tµν , and the pseudo-scalar P5 can be expressed in terms of p, P and S. In the

following equations, the hermiticity and the time-reversal conditions have been applied :

S =
1
2
Tr(φ) = C1 (2.62)

Vµ =
1
2
Tr(γµφ) = C2P

µ + C3p
µ (2.63)

Aµ =
1
2
Tr(γµγ5φ) = C4S

µ + C5p · SPµ + C6p · Spµ (2.64)

P =
1
2i
T r(γ5φ) = 0 (2.65)

T µν =
1
2i
T r(σµνγ5φ) = C7P

[µSν] + C8p
[µSν] + C9p · SP [µpν], (2.66)

where the coefficients Ci = Ci(p2, p · P ) are real functions, owing to hermiticity. If the

transverse momenta are neglected, only the vector, axial, and tensor terms remain as non-

zero and Eqs.(2.63),(2.64) and (2.66) can be expressed as :

Vµ =
1
2

∫
d4ξeip·ξ〈PS|ψ̄(0)γµψ(ξ)|PS〉 = A1P

µ (2.67)

Aµ =
1
2

∫
d4ξeip·ξ〈PS|ψ̄(0)γµγ5ψ(ξ)|PS〉 = λNA2P

µ (2.68)

T µν =
1
2i

∫
d4ξeip·ξ〈PS|ψ̄(0)σµνγ5ψ(ξ)|PS〉 = A3P

[µS⊥
ν], (2.69)
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where Ai(p2, p ·P ) are real functions and Sµ ≈ λNP
µ

M +S⊥
µ is the nucleon spin with nucleon

helicity λ. Now the correlation matrix can be written in the form [5] :

Φ(p, P, S) =
1
2
[
A1 /P +A2λNγ5 /P +A3 /Pγ5/S⊥

]
(2.70)

with

A1 =
1

2P+
Tr(γ+Φ) (2.71)

λNA2 =
1

2P+
Tr(γ+γ5Φ) (2.72)

S⊥
iA3 =

1
2P+

Tr(iσi+γ5Φ) =
1

2P+
Tr(γ+γiγ5Φ) (2.73)

Here, P+ is the component of the momentum4 of the nucleon along the light-cone axis x+

as described in Appendix A. Integrating the amplitudes A1, A2 and A3 over p with the

constraint x = p+

P+ , the three leading-twist5 distribution functions can be obtained :

q(x) =
∫

d4p

(2π)4
A1(p2, p · P )δ

(
x− p+

P+

)
(2.74)

∆q(x) =
∫

d4p

(2π)4
A2(p2, p · P )δ

(
x− p+

P+

)
(2.75)

δq(x) =
∫

d4p

(2π)4
A3(p2, p · P )δ

(
x− p+

P+

)
(2.76)

Then the correlation function, when integrated over the quark momentum p, can be ex-

pressed as:

Φ(x) =
1
2
[
q(x)/P + λN∆q(x)γ5 /P + δq(x)/Pγ5/S⊥

]
(2.77)

These parton distribution functions can provide a comprehensive information about the spin

and momentum distributions of the quarks inside the nucleon. The first two distribution

functions q(x) and ∆q(x) are known to reasonable precision as mentioned earlier. The

third distribution function δq(x), which is named as the transversity distribution function,

is the least known and only a few measurements have been dedicated to investigate this
4In the limit Q2 → ∞, the four momentum vector of the nucleon can be expressed in the light-cone

coordinates as : pµ =
h
M2

2P+ , P
+,~0

i
. See Appendix A.

5Twist is used as a parameter to represent particular effect realized in a particular experiment in the
order of 1

Q2 . For instance, if an observable in an experiment exhibits a behavior that is governed by ( 1
Q2 )n,

then the twist of the observable is defined as t = 2 + 2n. The leading twist corresponds to t=2 which implies
n=0. Thus, the leading twist behavior is independent of ( 1

Q2 ). In the operator product expansion (OPE)

formalism, twist (t) is defined as the difference between the dimension (d) and spin (s) of an operator, i.e.,
t=d−s. The extensive formal derivation of twist can be found in [67].
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function so far. The first extraction of δq(x) has been performed by the global fit of

the data from HERMES, COMPASS and BELLE [46]. These parton distribution functions

follow the following relations for the antiquarks where the anticommutation relations for the

Fermion fields in the connected matrix elements have been used, i.e., (〈PS|ψ̄(ξ)ψ(0)|PS〉 =

−〈PS|ψ(0)ψ̄(ξ)|PS〉) [5]:

q̄(x) = −q(−x) (2.78)

∆q̄(x) = ∆q(−x) (2.79)

δq̄(x) = −δq(−x), (2.80)

where x >0.

2.3.1 Probabilistic Interpretation of the Distribution Function

It is worthwhile to discuss here the distribution functions as probability densities for finding

the partons in a given polarization direction which carry a given momentum fraction x

inside the nucleon. In the field theoretical definitions, the quark field can be decomposed

into “large” and “small” components [5] :

ψ = ψ+ + ψ− (2.81)

and ψ± = 1
2γ
∓γ±ψ. In the limit P+ → ∞, the “large” component ψ+ dominates over

the “small” components ψ−. The probabilistic content of the distribution functions with a

complete set of n intermediate states included can be expressed in terms of the following

functions.

• Unpolarized Distribution Function q(x)

q(x) =
1√
2

∑
n

δ((1− x)P+ − Pn+)|〈PS|ψ+(0)|n〉|2, (2.82)

where the summation over the n intermediate states incorporates the integration over

the phase space. Thus the unpolarized distribution function gives the probability of

finding an unpolarized quark with a longitudinal momentum fraction x, where x =

p+/P+.
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• Helicity Distribution Function ∆q(x)

∆q(x) =
1√
2

∑
n

δ((1− x)P+ − Pn+)
[
|〈PS|P+ψ+(0)|n〉|2

− |〈PS|P−ψ+(0)|n〉|2
]
, (2.83)

where P± = 1
2(1± γ5). The helicity distribution function gives the difference between

the probability of finding a quark with momentum fraction x with its helicity in the

same direction as that of the nucleon (denoted by + state) inside the nucleon and

the probability of finding it with its helicity in the opposite direction as that of the

nucleon (denoted by - state).

• Transversity Distribution Function δq(x)

δq(x) =
1√
2

∑
n

δ((1− x)P+ − Pn+)
[
|〈PS|P↑ψ+(0)|n〉|2

− |〈PS|P↓ψ+(0)|n〉|2
]
, (2.84)

where P↑↓ = 1
2(1 ± γ1γ5). The transversity distribution function gives the difference

between the probability of finding a quark with momentum fraction x with its polar-

ization in the same direction as that of the nucleon (denoted by ↑ state) inside the

nucleon and the probability of finding it with its polarization in the opposite direction

as that of the nucleon (denoted by ↓ state). In this case, the nucleon is polarized in

the trasverse direction with respect to the incoming lepton beam.

2.3.2 Vector, Axial and Tensor Charge

The integration of Eqs.(2.74), (2.75), and (2.76) over x gives the vector, axial, and tensor

charges of the nucleon, respectively:

q =
∫

0

1

[q(x)− q̄(x)]dx = gV , (2.85)

∆q =
∫

0

1

[∆q(x)−∆q̄(x)]dx = gA, (2.86)

δq =
∫

0

1

[δq(x)− δq̄(x)]dx = gT . (2.87)

2.4 Distribution Functions with Quark-nucleon Helicity Amplitudes

The leading-twist quark distribution functions can be expressed in terms of quark-nucleon

forward helicity amplitudes. In the helicity basis [|+〉, |−〉], there are 16 different forward
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amplitudes AΛλΛ′λ′ in general that can be defined where λλ′ (ΛΛ′) are the quark (nucleon)

helicities in the initial and final states. Now helicity conservation, parity invariance, and

time-reversal invariance demand :

Λ + λ = Λ′ + λ′, (2.88)

AΛλΛ′λ′ = A−Λ−λ−Λ′−λ′ , (2.89)

AΛλΛ′λ′ = AΛ′λ′Λλ. (2.90)

Thus, having imposed all the constraints, we are left with only three independent amplitudes

out of the 16 : A++++, A+−+− and A+−−+ as shown in the Fig. 2.9.

Figure 2.9: The handbag diagrams for the unpolarized distribution q(x) (left), helicity dis-
tribution ∆q(x) (middle) and the transversity distribution δq(x) (right). There are helicity
flips of both quark and nucleon in case of δq(x) and hence helicity is not conserved. In each
of the diagrams, the top pair of signs (+ or −) represents the helicities of the quark and
the bottom pair represents the helicities of the nucleon.

As can be seen, the first two amplitudes do not involve any quark or nucleon helicity flip.

However, the last amplitude requires the helicity flip of the quark as well as the nucleon.

The optical theorem (see Appendix B for details) relates these helicity amplitudes to the

three leading twist distribution functions :

q(x) = q+(x) + q−(x) ∼ Im(A++++ +A+−+−), (2.91)

∆q(x) = q+(x)− q−(x) ∼ Im(A++++ −A+−+−), (2.92)

δq(x) ∼ Im(A+−−+). (2.93)

As mentioned above, the amplitude being off-diagonal due to the helicity flip of both the

nucleon and the quark, the transversity distribution δq(x) can not be diagonalized in the

helicity basis and hence it carries no probabilistic interpretation in the helicity basis. In
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order to associate a probabilistic interpretation to the transversity distribution function, it

is essential to transform the helicity basis to the transversity or chirality basis, the latter

being a linear combination of the former. The transversity or the chirality basis can be

realized as :

| ↑〉 =
1
2

(|+〉+ i|−〉), | ↓〉 =
1
2

(|+〉 − i|−〉). (2.94)

In this basis, δq(x) can be interpreted as the difference in the probabilities of finding a

quark with its spin aligned along the transverse spin of the parent nucleon and with its spin

anti-aligned with respect to the spin of the nucleon. Thus transversity distribution can be

expressed as :

δq(x) = q↑(x)− q↓(x) ∼ Im(A↑↑↑↑ −A↑↓↑↓) (2.95)

The helicity basis and the transversity basis can be related by means of rotation. In the

relativistic regime, the Lorentz boost and rotation do not commute and hence helicity

distribution and the transversity distribution are different. In addition, unlike the helicity

distribution there is no transversity distribution for gluons because the gluons have integer

spins and any flipping of the helicity would result in a helicity flip of 2 for the nucleons in

the process which is impossible for a spin half target. However, targets with higher spin

may have a helicity-flip gluon distribution. Thus the transversity distribution δq(x) has a

valence like behavior, but the Q2 evolution of δq(x) and ∆q(x) are different. This is shown

in Fig. 2.10 and Fig. 2.11.

The Soffer Inequality

From the definitions of the three leading twist distribution functions, viz, q(x) = q+(x) +

q−(x), ∆q(x) = q+(x) − q−(x), and δq(x) = q↑(x) − q↓(x), one can realize the following

obvious bounds on these functions :

|∆q(x)| ≤ q(x), |δq(x)| ≤ q(x). (2.96)

These bounds are satisfied by the antiquarks as well. Another non-trivial bound involving

all the three distribution functions together was deduced by Soffer [68]. Introducing a

quark-nucleon vertex aΛλ′ where Λ and λ are the helicities of the nucleon and the quark
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Figure 2.10: The Q2 evolution of the transversity distribution function δq(x) and the helicity
distribution ∆q(x) for up and down quarks. This Chiral Quark Soliton Model calculation
shows that for both up and down quarks, the Q2 evolutions of the respective distributions
differ in the low x region. These figures have been taken from [5].

respectively, Eqs.(2.91), (2.92) and (2.93) can be rewritten as follows [5]:

q(x) ∼ Im(A++,++ +A+−,+−) ∼
∑
X

(a∗++a++ + a∗+−a+−), (2.97)

∆q(x) ∼ Im(A++,++ −A+−,+−) ∼
∑
X

(a∗++a++ − a∗+−a+−), (2.98)

δq(x) ∼ Im(A+−,−+) ∼
∑
X

a∗−−a++ (2.99)

Now, ∑
X

|a++ ± a−−|2 ≥ 0 (2.100)

and using parity conservation, we get,∑
X

a∗++a++ ±
∑
X

a∗−−a++ ≥ 0 (2.101)

This can be expressed in terms of the distribution function as follows :

q(x) + ∆q(x) ≥ 2|δq(x)| (2.102)

This is called the Soffer inequality. It must be satisfied by all three leading twist distribution

functions. It was very complicated to derive the inequality as the distributions involved can
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Figure 2.11: The Q2 evolution of the transversity distribution function δq(x) and the helicity
distribution ∆q(x) for anti-up and anti-down quarks. This Chiral Quark Soliton Model
calculation shows that for both anti-up and anti-down quarks, the Q2 evolutions of the
respective distributions differ in the low x region [5].

not be diagonalized in the same basis simultaneously and hence it requires the consideration

of the probability amplitudes. The Soffer bound is shown in the Fig. 2.12.

2.5 Transverse Motion of Quarks : Transverse Momentum Dependent Distri-

bution Function

The intrinsic transverse momentum of a quark can be neglected as compared to the longi-

tudinal component since we do not deal with the final momentum of the produced hadron

in the inclusive scattering process. However in semi inclusive processes, the transverse mo-

menta of quarks ~pT can no longer be ignored as they influence the momenta of the hadrons

in the final state. In general, the momentum of the quark in such a process can be expressed

as :

pµ = xPµ + pµT (2.103)

Here Pµ is the total longitudinal momentum of the nucleon and x is the fraction of the

longitudinal momentum carried by the quark. Now if we take into consideration the trans-

verse momenta of the quarks, additional amplitudes appear in Eqs.(2.68) and (2.69) for the
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Figure 2.12: The Soffer bound for the twist-2 distribution functions [5].

axial-vector and tensor components of the correlation matrix which are described in [5].

The eight ~pT dependent distribution functions related to these amplitudes are shown in

Fig. 2.13.

Integration over ~pT with the chirality and time-reversal conditions forces most of the

functions to vanish except the following three :

q(x) =
∫
d2 ~pT q(x, p2

T ), (2.104)

∆q(x) =
∫
d2 ~pT∆q(x, p2

T ), (2.105)

δq(x) =
∫
d2 ~pT

[
hq1T (x, p2

T ) +
p2
T

2M
h⊥q1T (x, p2

T )
]

=
∫
d2 ~pT δq(x, p2

T ). (2.106)

However, if time reversal invariance is not applied, two other distribution functions survive

after the integration over ~pT . These are the T-odd distribution functions : Sivers distribu-

tion function (f⊥1T ) and Boer-Mulders function (h⊥1 ). The Sivers function is related to the

probability of finding an unpolarized quark in a transversely polarized nucleon whereas the

Boer-Mulders function gives the probability of finding a transversely polarized quark in an

unpolarized nucleon. The Sivers function f⊥1T was first proposed by Sivers [69] in order to

explain the single-spin asymmetries observed in pion electroproduction in p-p scattering.

f⊥1T relates the intrinsic transverse momentum of the quark to the transverse spin of the
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Figure 2.13: The transverse momentum dependent (TMD) parton distribution functions.
Only leading twist functions are shown. The large circle represents the nucleon and the
small circle depicts the quark inside it. The arrow associated with the respective nucleon
and the quark signifies the spin orientation of them.

nucleon. It is expected that the non-zero Sivers function might signify the existence of

orbital momentum of quarks inside the nucleon which could be the missing contribution to

the nucleon spin [47].

2.6 The Semi-Inclusive Deep Inelastic Scattering (SIDIS) and Fragmentation

Functions (FF)

The transversity distribution function can not be accessed in inclusive DIS because of its

chiral-odd nature. In order to preserve chirality in the process, one has to measure another

chiral-odd object together with the transversity distribution. The convolution of the chiral-

odd distribution function with the fragmentation function (discussed in the next subsection)

allows to access the transversity distribution function without violating any chirality conser-

vation if the fragmentation function is known. SIDIS is one of the several ways to measure

the transversity distribution function in combination with the Collins fragmentation func-

tion. In one hadron SIDIS, a final state hadron is detected in coincidence with the scattered
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electron :

l(k) +N(P ) −→ l(k′) + h(Ph) +X(PX), (2.107)

where l is the incoming lepton with four momentum k scattered off a nucleon N with four

momentum P . h is the final state hadron detected with momentum Ph and X is the un-

detected hadronic final state with momentum PX . In case of SIDIS, the process of the

formation of the final state hadrons has to be accounted for as an additional feature in the

formalism of inclusive DIS discussed earlier. The process of formation of final state hadrons

from the quarks in the deep inelastic regime is called fragmentation or hadronization. The

fragmentation process occurs at low Q2 and hence it can not be described with perturbative

QCD.

The leptonic tensor in the case of SIDIS remains the same as discussed in inclusive DIS

since the leptonic vertices in both cases are identical. However, the hadronic tensor gets

modified because the fragmentation process comes into play. The hadronic tensor in SIDIS

can be expressed as :

Wµν =
1

2M

∑
i

e2
i

∫
d4pd4kδ(4)(p+ q − k)Tr(Φ(p, P, S)γµ∆(k, Ph)γν), (2.108)

where Φ is the correlation function defined earlier and ∆ is the modified correlation function

which incorporates the fragmentation process:

∆ij(k, Ph) =
1

(2π)4

∫
d4ξeik·ξ〈0|ψi(ξ)|Ph〉〈Ph|ψ̄j(0)|0〉. (2.109)

In analogy to the formalism followed earlier in case of the distribution function, one can de-

compose this new correlation function ∆ in the basis of Dirac matrices which in turn results

in eight fragmentation functions in leading twist. These fragmentation functions depend

on the fraction of the energy carried by the outgoing hadron which is denoted by z, with

z = P · Ph/P · q and on z2k2
T where ~kT is the transverse momentum of the final fragmenting

quark. The summation includes all spins of the detected hadrons as we are not interested

in the polarization of the final hadrons. Therefore after summing over all the spins of the

hadrons, only two leading twist fragmentation functions (FF) survive : the unpolarized FF

Dq
1(z, z2k2

T ) and the Collins FF H⊥q1 (z, z2k2
T ). The probabilistic interpretations of these

two FFs are discussed next.
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Probabilistic Interpretation of Dq
1(z, z2k2

T ) and H⊥q1 (z, z2k2
T ) :

The probabilistic interpretation of the fragmentation functions (FF) can be realized simi-

lar to the distribution functions (DF). The unpolarized FF Dq
1(z, z2k2

T ) is the probability

density that a struck quark q, having a transverse momentum ~kT , fragments into a hadron

of type h which carries a momentum fraction z. The Collins FF H⊥q1 (z, z2k2
T ) represents

the difference of the probability densities for the quarks with transverse spin orientations

(represented by ↑ and ↓) fragmenting into a hadron h. These two FFs are shown in Fig. 2.14.

Figure 2.14: The transverse momentum dependent (TMD) fragmentation functions (twist-
2). The unpolarized fragmentation function is shown in the left while the Collins fragmen-
tation function is depicted on right. The large circle represents the unpolarized hadron
produced by the fragmenting quarks which are represented by the small circle inside the
large one.

The unpolarized FF Dq
1(z, z2k2

T ) is a chiral-even and T-even function while the Collins

FF H⊥q1 (z, z2k2
T ) is a chiral-odd and T-odd function. The T-odd behavior for the Collins

FF can be explained by the final state interaction described in Ref. [70].

As mentioned earlier, the fragmentation process can not be described by perturbative

QCD. Instead, there exist different phenomenological models in order to describe the pro-

cess. The Lund model is one of the most successful models that has been developed which

describes the existing experimental data [71], [72]. In this model, the highest energy gluons

are treated as field lines which are attracted to each other due to the gluon self interaction

and form a string of strong color field. The field generates a potential which increases with

the distance between the quarks. In the reaction when the quark is struck by the virtual

photon with enough energy, it starts getting away from the other quarks and hence the

potential energy of the string increases linearly with separation. At some point, when this

increasing energy surpasses the rest mass of the quark-antiquark pair, the string breaks and
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creates another quark-antiquark pair. The two constituent quark and anti-quark in the new

pair are connected to the initial quark by two strings. The process of breaking strings and

formation of new quark-antiquark continues until a quark-antiquark pair is formed which

is close to the mass of a hadron.

Considering only the three lightest quark flavors u, d, and s and applying isospin symmetry

and charge conjugation, the FFs can be divided into three different categories : favored,

unfavored, and strange. The classification is based on the flavor of the fragmenting quarks

and the quark contents of the produced hadron and is given as follows:

F fav(z,Q2) = F π
+

u (z,Q2) = F π
−

ū (z,Q2) = F π
+

d̄ (z,Q2) = F π
−

d (z,Q2), (2.110)

F unfav(z,Q2) = F π
−

u (z,Q2) = F π
+

ū (z,Q2) = F π
−

d̄ (z,Q2) = F π
+

d (z,Q2), (2.111)

F strange(z,Q2) = F π
+

s (z,Q2) = F π
−

s̄ (z,Q2) = F π
+

s̄ (z,Q2) = F π
−

s (z,Q2). (2.112)

Here F represents the generic FF which includes both the unpolarized and Collins FF.

Similar expressions hold for charged kaons. Global analysis of the fragmentation functions

for protons and inclusive charged hadrons have been done with data using single-inclusive

hadron production in e+e− annihilation, p − p collisions from RHIC, and deep inelastic

lepton-proton scattering from HERMES [73].

2.7 The SIDIS Cross Section

The semi-inclusive DIS cross section of single hadron fragmentation for low transverse mo-

mentum of the hadron can be decomposed in terms of the structure functions. It can be

calculated in terms of transverse-momentum-dependent (TMD) parton distributions and

fragmentation functions at tree level [74]. In the derivation of the results, only one photon

exchange approximation is implemented. The single hadron SIDIS process is depicted in

Fig. 2.15.

The quantities are defined below:

• (~k, ~k′) : momenta of incoming lepton (electron in our case) and scattered lepton. They

form the scattering plane.

• ~S⊥ : the transverse component of the target spin vector.

• φS : azimuthal angle between ~S⊥ and the scattering plane.
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• ~Ph : momentum of the outgoing hadron.

• ~Ph⊥ : transverse component of ~Ph.

• φh : azimuthal angle between the scattering plane and the hadron production plane.

Figure 2.15: Schematic of the kinematic planes and azimuthal angles related to the trans-
verse component of the target spin ~S⊥ and the transverse component of the momentum of
the produced hadron ~Ph⊥.

Following the Trento conventions [75] in the target rest frame, the cross section of SIDIS

process (where in this case, only the unpolarized hadrons are detected in the final state in

coincidence with the scattered electrons) can be expanded in terms of a set of structure

functions in a model-independent way as shown in Eq. (2.113) on the next page.
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dσh

dxdydzdφSdφhdP
2
h⊥

=
α2
s

xyQ2

y2

2(1− ε)

(
1 +

γ2

2x

)[
FUU,T + εFUU,L

+
√

2ε(1 + ε) cosφhF
cosφh
UU + ε cos(2φh)F cos 2φh

UU

+ λe
√

2ε(1− ε) sinφhF
sinφh
LU

+ S‖

[√
2ε(1 + ε) sinφhF

sinφh
UL + ε sin(2φh)F sin 2φh

UL

]

+ S‖λe

[√
1− ε2FLL +

√
2ε(1− ε) cosφhF

cosφh
LL

]

+ |S⊥|[sin(φh − φS)
(
F

sin(φh−φS)
UT,T + εF

sin(φh−φS)
UT,L

)

+ sin(φh + φS)F sin(φh+φS)
UT + ε sin(3φh − φS)F sin(3φh−φS)

UT

+
√

2ε(1 + ε) sinφSF
sinφS
UT +

√
2ε(1 + ε) sin(2φh − φS)F sin(2φS−φS)

UT ]

+ |S⊥|λe[
√

1− ε2 cos(φh − φS)F cos(φh−φS)
LT +

√
2ε(1− ε) cosφSF

cosφS
LT

+
√

2ε(1− ε) cos(2φh − φS)F cos(2φh−φS)
LT ]

]
(2.113)

where αs is the strong coupling constant and ε is the ratio of the longitudinal and

transverse photon flux given by :

ε =
1− y − 1

4γ
2y2

1− y + 1
2y

2 + 1
4γ

2y2
(2.114)

Here, γ = 2Mx/Q2 and y is the fractional energy loss of the lepton where y = P · q/P · k.

The structure functions in the above Eq.(2.113) are functions of x, Q2, z, and P 2
h⊥. The

first subscript in F indicates the beam polarization and the second represents the respec-

tive target polarization. The third subscript signifies the polarization of the virtual photon.
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Now from Eq.(2.113), one can calculate and extract the various structure functions by im-

plementing the parametrization of the different correlators of the hadronic tensors discussed

in Ref. [74].

Convolution of Distribution Functions and Fragmentation Functions

The structure functions in the above expression for the cross section can be expressed

in a compact way by introducing the convolution integral and defining a unit vector ĥ⊥ =

Ph⊥/|Ph⊥| as follows:

C[W,d, F ] = x
∑
q,q̄

e2
q

∫
d2~pTd

2~kT δ
2

(
~pT − ~kT −

~Ph⊥
z

)
·

W (~pT ,~kT )dq(x, p2
T )Fq(z, z2k2

T ) (2.115)

where W (~pT ,~kT ) is an arbitrary function, and dq(x, p2
T ) and Fq(z, z2k2

T ) are the distribution

function and fragmentation function respectively. The summation is over all quarks and

anti-quarks. The structure functions, then, can be written as a convolution of the distribu-

tion functions and the fragmentation functions. The complete list of the results is reported

in [74]. Here only a few of those mentioned are relevant to the thesis :

FUU,T = C[qD1], (2.116)

where q and D1 are the unpolarized distribution function and fragmentation functions as

mentioned in earlier sections and

FUU,L = 0. (2.117)

The Boer-Mulders distribution function h⊥1 and the Collins fragmentation function H⊥1 are

convoluted as

F cos 2φh
UU = C[−2(ĥ⊥ · ~kT )(ĥ⊥ · ~pT )− ~kT · ~pT

MMh
h⊥1 H

⊥
1 ]. (2.118)

The transversity distribution function δq and the Collins fragmentation function H⊥1 are

related as

F
sin(φh+φS)
UT = C[− ĥ⊥ ·

~kT
Mh

δqH⊥1 ], (2.119)
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and the Sivers distribution function f⊥1T is convoluted with the unpolarized fragmentation

D1 function as

F
sin(φh−φS)
UT = C[− ĥ⊥ · ~pT

M
f⊥1TD1]. (2.120)

Other terms such as F sin(3φh−φS)
UT , F sin(φS)

UT , F sin(2φh−φS)
UT , etc. have reasonably small contri-

butions to the SIDIS cross section.

From the viewpoint our experiment in which the incoming electron beam is unpolarized

and the target is transversely polarized, it is convenient to separate the SIDIS cross section

into two parts :

dσh ≡ dσUU + dσUT

≡ dσUU + (dσCollinsUT + dσSiversUT + dσothersUT ), (2.121)

where each of the terms has the following general structure [76]:

dσbeam,target =
2α2

s

sx2y2
⊗K(y)⊗M(φh, φS)⊗ C[w · d · F ]. (2.122)

K(y) is a kinematic factor defined in [74] and M(φh, φS) is the angular modulation associ-

ated with the convolution C depending on the sine and cosine of the azimuthal angles φh

and φS . One of the two important terms we are interested in is :

dσCollinsUT =
−2α2

s

sx2y2
|~S⊥|KC(y) sin(φh + φS)C[ ĥ⊥ ·

~kT
Mh

δqH⊥1 ] (2.123)

Here dσCollinsUT is the contribution from the convolution of the transversity distribution and

the Collins fragmentation function to the SIDIS cross section modulated by sin(φh + φS)

and the kinematic factor KC(y) is defined as :

KC(y) =
[
1− y − y2γ2

4

]
1

1 + γ2
(2.124)

The other important contribution comes from the convolution of the Sivers distribution and

the unpoalrized fragmentation function modulated by sin(φh − φS):

dσSiversUT =
−2α2

s

sx2y2
|~S⊥|KS(y) sin(φh − φS)C[ ĥ⊥ · ~pT

M
f⊥1TD1] (2.125)

where the kinematic factor KS(y) is defined as :

KS(y) =
[
1− y +

y2

2
− y2γ2

4

]
1

1 + γ2
(2.126)
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It is worthwhile to mention here that the contribution from the term dσothersUT is modulated

by sin(3φh − φS) and arises from the convolution of the distribution function h⊥1T and the

Collins fragmentation function H⊥1 . The distribution function h⊥1T is known as pretzelocity

and the interpretation of the function and its analysis from the data are beyond the scope

of this thesis. However, the effect of this term in our analysis was treated as a systematic

uncertainty (see Appendix G).

Transverse Single Spin Asymmetry (SSA):

In order to extract the different distribution functions as well as the fragmentation func-

tions experimentally, cross section asymmetries are measured instead of the absolute cross

sections. This helps in getting rid of various systematic uncertainties which in turn makes

the extraction of these functions more reliable precision. The target SSA can be defined as:

AUT ≡
1

|~ST |
dσUT
dσUU

=
1

|~ST |
dσ(φh, φS)− dσ(φh, φS + π)
dσ(φh, φS) + dσ(φh, φS + π)

, (2.127)

where the target spin vector ~ST is flipped6 through an angle of 180◦ to form the cross

section asymmetries. Here the modulation term sin(3φh − φS) in Eq.(2.113) is neglected.

The experimentally measured asymmetries are approximated as a combined contribution of

the Collins and Sivers asymmetries which have different angular dependencies as discussed

in the previous subsection. The asymmetry can be written as:

AUT = ACollinsUT sin(φh + φS) +ASiversUT sin(φh − φS), (2.128)

where the interpretation of ACollinsUT and ASiversUT as the azimuthal moments is discussed in

the following section. In practice, the terms ACollinsUT and ASiversUT are referred to as Collins

moment and Sivers moment respectively.

2.8 The Collins and Sivers Moments

In the process of extracting the distribution and fragmentation functions via the SSAs, it

is convenient to deal with the azimuthal moments. This is because one can not separate

the convolution of the distribution function and the fragmentation function experimenatlly.
6In E06010, the asymmetry is formed by flipping the spins of the 3He target every 20 minutes by applying

an RF field to the target.
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Following the published HERMES and COMPASS measurements [77], [78], [79], the Collins

moment ACollinsUT and the Sivers moment ASiversUT are defined as:

ACollinsUT ≡ 2〈sin(φh + φS)〉UT · R, (2.129)

ASiversUT ≡ 2〈sin(φh − φS)〉UT , (2.130)

where the factor R is a kinematic factor which is different for HERMES and COMPASS.

As for this experiment E06010, this difference is negligible, only the definitions applied

to HERMES are adopted. Hence, R is a function of KC(y) and KC(y) introduced in the

previous section. The two moments can be defined in terms of the convolution of the

distribution function and the fragmentation function as

ACollinsUT = −|~ST |
1

x2y2
KC
∫
d2 ~Ph⊥C[ ĥ⊥·

~kT
Mh

δq(x, p2
T )H⊥1 (z, z2k2

T )]
1

x2y2
KSC[q(x)D1(z)]

(2.131)

ASiversUT = −|~ST |
1

x2y2
KS
∫
d2 ~Ph⊥C[ ĥ⊥·~pTM δf⊥q1T (x, p2

T )D⊥1 (z, z2k2
T )]

1
x2y2
KSC[q(x)D1(z)]

(2.132)

In practice, the term ACollinsUT and ACollinsUT can be obtained directly by fitting the measured

asymmetry with any of the following fitting functions:

AUT = C sin(φh + φS), (2.133)

AUT = S sin(φh − φS), (2.134)

AUT = C sin(φh + φS) + S sin(φh − φS), (2.135)

where C and S are the fit coefficients obtained to be identified as the Collins moment

(ACollinsUT ) and Sivers moment (ASiversUT ), respectively. This simple fitting procedure has been

adopted for the E06010 data where the pretzelocity term has not been taken into account

and the extraction of these coefficients is the primary objective of the work presenetd in

this thesis. However, for the sake of completeness, different deconvolution methods (model

dependent) to extract the transversity distribution function from the experimentally mea-

sured moments are summarized below.

Deconvolution of the moments:

The convolution of the distribution and fragmentation functions in the measured mo-

ments makes it difficult to factorize and separate them because of the weight factors
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ĥ⊥ · ~kT /Mh and ĥ⊥ · ~pT /M involved in the Collins and Sivers moments respectively. How-

ever, a couple of recipes are discussed in [80], [81], and [82]. Let us consider them briefly.

• Assumption : No intrinsic transverse momentum exists for quarks: In this

case, it is assumed that the quarks do not have any intrinsic transverse momentum

inside the nucleon and hence the transverse momentum of the produced hadrons with

respect to the virtual photon is solely introduced in the fragmentation process. In

other words, if we introduce the relation ~KT = −z~kT where ~KT and ~kT are the trans-

verse momenta of the hadron and the fragmenting quark respectively, the convolution

in the Collins moment can be disentangled and one can write :

δq(x, p2
T ) ≈ δq(x)

δ(p2
T )
π

, H⊥1T (z,K2
T ) ≈ H⊥1T (z)

δ(K2
T )

π
. (2.136)

• Gaussian ansatz : In this case, it is assumed that the transverse momentum ex-

hibits a Gaussian-like behavior in case of both distribution as well as fragmentation

functions. Thus one has

δq(x, p2
T ) ≈ δq(x)

e

−p2T
〈p2
T

(x)〉

π〈p2
T (x)〉

, H⊥1T (z,K2
T ) ≈ H⊥1T (z)

e

−K2
T

〈K2
T

(z)〉

π〈K2
T (z)〉

, (2.137)

where 〈p2
T (x)〉 = 1

q(x)

∫
d2~pT p

2
T q(x, p

2
T ) and 〈K2

T (z)〉 = 1
D1(z)

∫
d2 ~KTK

2
TD1(z,K2

T ).

Then the Collins and Sivers moments can be expressed in a factorized form as follows

[59]:

ACollinsUT =
2|~ST |√

1 + z2〈p2T (x)〉
〈K2

T (x)〉

1
xy2
KC(y)

∑
q,q̄ e

2
qδq(x)H⊥(1/2)q(z)

1
xy2
KS(y)

∑
q,q̄ e

2
qq(x)Dq

1(z)
, (2.138)

ASiversUT = − 2|~ST |√
1 + [ z

2〈p2T (x)〉
〈K2

T (x)〉 ]
−1

1
xy2
KS(y)

∑
q,q̄ e

2
qf
⊥(1/2)q
1T (x)Dq

1(z)
1
xy2
KS(y)

∑
q,q̄ e

2
qq(x)Dq

1(z)
. (2.139)

In practice, one can avoid making any of the above assumptions and still deconvolute

the integrals by implementing a weight factor Ph⊥/zMh and constructing Ph⊥-weighted

asymmetries. However, this requires the binning of the cross section according to the

hadron transverse momentum [15]. The Ph⊥-weighted Collins and Sivers moments are :

Ph⊥
zMh

ACollinsUT ≡ 2|~ST |
1
xy2
KC(y)

∑
q,q̄ e

2
qδq(x)H⊥(1)q(z)

1
xy2
KS(y)

∑
q,q̄ e

2
qq(x)Dq

1(z)
, (2.140)

Ph⊥
zM

ASiversUT ≡ −2|~ST |
1
xy2
KS(y)

∑
q,q̄ e

2
qf
⊥(1)q
1T (x)Dq

1(z)
1
xy2
KS(y)

∑
q,q̄ e

2
qq(x)Dq

1(z)
. (2.141)
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Note that the factor 1
xy2
Ks(y) in the numerator and the denominator in Eq.(2.141) may

not cancel because of the independent integrations over x and y in a measurement. The

factorization theorem7 for SIDIS at low transverse momenta in order to disentangle the

distribution and fragmentation functions is reported in [83], [84].

2.9 Summary of HERMES and COMPASS Results

The results of the Collins and Sivers moments for different hadrons from the HERMES

and COMPASS data on different targets are summarized in this section. The HERMES

collaboration reported single spin azimuthal asymmetries in the semi-inclusive DIS lepton

(27.6 GeV) scattering off a hydrogen target [85], [6]. Fig. 2.16 shows the Collins and Sivers

moments extracted from the data at HERMES during the years 2002 to 2005.

Figure 2.16: The Collins (left) and the Sivers (right) moments for the charged hadrons as
a function of x, z and Ph⊥. The systematic uncertainties are represented by the shaded
band [6].

The Collins moments for π+ and π− are different from zero and have opposite signs

(positive for π+ and negative for π−). On the other hand, the Collins moment for K− is
7A general cross section is a combination of short- and long-distance (corresponding to high Q2 and low

Q2) behavior which can not be calculated directly in the perturbation theory. Factorization theorems, in
general, allows the separation of the short distance partonic subprocesses from the long distance (low Q2 and
hence strong αs) binding effects in a systematic way. The partonic subprocesses can be calculated within
perturbative QCD and the long distance processes can be parametrized by parton distribution functions,
fragmentation functions, etc.
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positive while that for K+ is comparable to zero. The Sivers moments for the positively

charged hadrons are positive and zero for negatively charged hadrons.

The COMPASS collaboration also reported the Collins and Sivers azimuthal moments in

the scattering of 160 GeV/c muons off a deuteron target (6LiD) as well as off a proton target

(NH3) [7], [8]. The results from the deuteron target are shown in Fig. 2.17 and Fig. 2.18.

Figure 2.17: The Collins moments for the charged hadrons and K◦ as a function of x, z and
P hT [7].

The Collins and Sivers moments for all the hadrons in this case are comparable to

zero, apparently due to the cancellation of the contributions from the u and d quarks in

the deuteron. Fig. 2.19 and Fig. 2.20 shows the results on the proton target which agree

with the HERMES results for Collins moments in case of charged hadrons. However, unlike

HERMES, the Sivers moments for the unidentified charged hadrons in this case show values

comparable to zero.

The transversity experiment E06010 in Hall A at Jefferson Lab is the first experiment to

measure these azimuthal moments on polarized 3He which in turn will produce the first ever

results on an effective neutron target. The results on the neutron will not only complement

the existing results from HERMES and COMPASS as discussed above but may also put

more constraints on flavor decomposition. The final extraction of the transversity distribu-
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Figure 2.18: The Sivers moments for the charged hadrons and K◦ as a function of x, z and
P hT [7].

Figure 2.19: The Collins moments for the unidentified charged hadrons as a function of x,
z and P hT [8].

tion function is beyond the scope of this thesis. The preliminary single spin asymmetries

on the neutron in the SIDIS 3He↑(e, e′π−)X, and the separation of the Collins and Sivers
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Figure 2.20: The Sivers moments for the unidentified charged hadrons as a function of x, z
and P hT [8].

moments extracted from the measured asymmetries are presented in this work.

Copyright c© Chiranjib Dutta 2010
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CHAPTER 3: THE EXPERIMENT

Experiment E06010 measured the single spin asymmetry (SSA) on a transversely polarized
3He target in the deep inelastic region. The incoming electron beam was scattered off

a polarized target and the scattered electrons were detected in the BigBite spectrometer

coincident with the hadrons detected in the left high resolution spectrometer (LHRS). The

hadrons produced and detected in the scattering included pions, kaons, and protons. The

experiment was dedicated to measure the asymmetries of both pions and kaons. The focus

of this thesis is mostly on pion asymmetries, especially on π− mesons. In this chapter,

different detector packages in both the BigBite spectrometer and the LHRS as well as the

beam line components will be described.

3.1 Overview of CEBAF

Jefferson Laboratory is situated in Newport News, Virginia. Its superconducting radio

frequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides a multi-

GeV continuous wave electron beam quite efficiently for all the nuclear experiments. The

aerial view of the CEBAF complex is shown in Fig. 3.1.

Figure 3.1: The CEBAF aerial view in Newport News. The three experimental Halls are
also shown [9].
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The accelerator consists of an injector and two anti-parallel linear accelerators (linacs)

linked by nine recirculation beam lines for up to five passes. The schematic diagram of

the accelerator is shown in Fig. 3.2. The two arcs (east and west) consist of the above

mentioned recirculation beam lines giving rise to the “racetrack” shape of the accelerator.

Figure 3.2: Schematic of the accelerator and its components. Reproduced from [10].

The basic principle of the operation of different components are summarized as follows:

• The Injector is the “injection point” of the electron beam into the accelerator. The

electrons produced at the polarized electron source (discussed in the next section) have

an energy almost equal to 0.1 MeV. The injector contains 18 acceleration cavities, each

giving 2.5 MeV to an electron. Thus, the electrons leaving the injector actually have

an energy of about 45 MeV.

• The North and the South linacs have 20 cryomodules. Each of the cryomodules has

8 cavities. Thus, each linac has 160 cavities lined up in such a way that the 45 MeV

electrons entering into those cavities gain energy up to 500 MeV at the output each

time they pass through. Fig. 3.3 shows a cavity based on a design developed at Cornell

University. It operates at a frequency of 1497 MHz. More details can be found in [86].

The cavities are placed in liquid helium produced at the Central Helium Liquefier

(CHL). The CHL is a large refrigerator which keeps the helium at about 2.2 K and
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sends cold helium at a pressure of 2.8 atm to the cryomodules in the linacs.

Figure 3.3: A typical RF cavity.

• The East and the West arcs are the components of the accelerator that consist of

thousands of electromagnets which bend and focus the electron beam connecting the

two linacs. Each arc has a spreader and a combiner. This is extremely important

because the electrons in the linacs have different energies depending upon how many

times they have travelled through the linacs. Now when it comes to bending in the

arcs, the more energy the electron has, the more difficult it is to bend when it passes

through the magnet. Hence, all the electrons are separated by the magnet depending

on the energy such that the electrons having lowest energy are bent most and are

guided into the topmost pipe and the electrons having largest energy almost move

undeviated along the pipe near the floor. As a result, each of the pipes have electrons

with only one specific energy. On the other hand, all the electrons having five different

energies are combined back into one pipe in the recombiner by another magnet located

at the exit of an arc so that they all again pass through the linac together.

3.1.1 Polarized Electron Source

The CEBAF at Jefferson Laboratory has been dedicated to conduct high-precision nuclear

physics involving electromagnetic interactions that requires highly polarized electron beams,

often at high average currents. The continuous wave (cw) electron beam has a small emit-
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tance (ε <1 mm-mrad) and a very low energy spread ( ∆E
Erms

< 2× 10−5)1 [87]. GaAs-based

semiconductor photocathodes are used to produce the polarized electrons via the process of

photoemission by shining circularly polarized laser light on them. This cathode is actually

built on a GaAs substrate, different layers of which are shown in Fig. 3.4.

The top layer of pure GaAs is grown on a layer of GaAs0.72P0.28. The lattice constant

of GaAs0.72P0.28 is smaller than that of GaAs [88]. This lattice constant for the strained

GaAs1−xPx (in general) can be adjusted by varying the phosphorus fraction x. The shorter

lattice spacing of GaAs0.72P0.28 forces the natural spacing of pure GaAs to shrink and hence,

a strain is created in the topmost layer. The resulting biaxial compressive strain within the

GaAs layer lifts the degeneracy in the P3/2 level of the electrons in the valence band. In

other words, this strain induces an energy gap between the sub-levels of the P3/2 electrons

as shown. The electrons in the P3/2,m3/2(P−3/2,m−3/2) valence band can be excited to

S1/2,m1/2(S−1/2,m−1/2) level in the conduction band only when a left (right) circularly

polarized laser with the proper wavelength is incident on the conduction band. This is

because the energy gap between the two sub-levels of the P3/2 created by the strain is

large enough so that the laser light can not excite the transitions from the two m=1/2 and

m=−1/2 states. Hence, if the polarization of the laser light has the same sign of circular

polarization (helicity +1 or −1), all the electrons that diffuse to the surface and escape are

either from S1/2,m1/2 orS−1/2,m−1/2 state depending on the helicity sign. As a result, one

could expect almost 100 polarized electrons coming out of the GaAs crystal.

Figure 3.4: Different layers of GaAs and the degenerate states available for optical pumping.

1Erms is the root mean square value of the energy of the continuous electron beam.
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3.2 Beamline

The Hall A beamline has a number of components that serve very effectively to transport

the electron beam onto the target as well as to measure and monitor the different essential

parameters of the beam. The basic beamline components include a Compton polarimeter

and a Møller polarimeter to measure the polarization of the electron beam, two Beam

Current Monitors (BCM) to measure the beam current, a raster (pair of dipoles) to control

the beam spot on the target, an “eP” device to measure the energy of the beam, and couple

of Beam Position Monitors (BPM) to measure the position of the beam on the target. These

important components in the beamline will be discussed in the following subsections.

3.2.1 Beam Energy

The energy of the electron beam is one of the basic characteristics that needs to be mea-

sured as accurately as possible. There are two independent methods usually employed to

measure the absolute energy. These are:

1. Arc energy measurement.

2. “eP” energy measurement.

However, during the transversity experiment, the beam energy was measured with Arc

energy method only. The “eP” energy method was not employed and hence will not be

discussed here.

The Arc Energy Measurement

This method, originally developed by P. Vernin et al. [89], basically measures the bend angle

of the electron beam through a precisely known magnetic dipole field in the arc section.

Eight dipole magnets are used to bend the beam by an angle of 34.3◦. The basic concept

that governs this method is the deviation of a moving charged particle in a magnetic field.

One can write the momentum of the charged particle (electron in this case) as a function

of the deflection angle and the magnetic field integral as follows:

P = k

∫
~B · d~l
θ

, (3.1)
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where θ is the deflection angle of the electron in radians, d~l is the path length traversed by

the electron, k= 0.299792 GeV.radT
−1m−1

c and the
∫
~B · d~l is the field integral in T·m [12].

Two measurements need to be performed simultaneously. One is to measure the field inte-

gral of the dipoles in the arc and the other one is to determine the actual bend angle of the

arc.

The field integral measurement is done based on a dipole magnet that sits outside the

arc which is called as the “9th magnet” or “reference magnet”. This is because all the eight

dipoles are located in the vacuum and those can not be probed directly. Hence, the 9th

dipole magnet was constructed, identical to the others and wired in series (hence the same

current flow). This dipole is instrumented with a Hall probe scanner that can be moved

through the field gap and the field can be measured directly. The assumption that the 3

m dipole responds identically to the other ones was directly tested after its construction [90].

The bend angle is measured by a set of wire scanners. As shown in Fig. 3.5, there are two

pairs of wire scanners at the entrance (upstream) of the arc and at the exit (downstream)

of the arc, respectively.

Figure 3.5: Schematic of the complete angle measurement in the arc energy method. The
wire scanners and the mirrors in the middle of the arc are shown with their respective
angles.

All the wires are vertical to the beam line and they are moved horizontally across the

beam line. When the beam hits the wire, the current generated by the scattered particles

off the wire is measured and the horizontal beam profile is observed. Both the profiles

at the entrance and at the exit are compared and the horizontal beam angles α and β are

determined. Finally, the auto collimation technique [89] allows the measurement of the total

bend angle by placing two mirrors facing opposite to each other at the middle of the arc
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Table 3.1: The Arc measurement result during E06-010. The corresponding result from the
Tiefenbach method is also shown.

date Arc measurement result ± stat. ± sys. Tiefenbach result ± sys
11/17/2008 (5889.4 ± 0.5 ± 1) MeV (5891.3 ± 2.5) MeV

and keeping the angle γ constant all the time. Hence, the total bend angle is θ = α+β+γ.

Both the Arc Energy method and the “eP” Energy method have an accuracy of ∆E
E ∼

2 × 10−4. There was only one Arc energy measurement performed during the experiment

with 6 µA cw beam in the dispersive mode. Most of the time, the beam energy was

monitored by the Tiefenbach method. The Tiefenbach method is usually employed for a

continuous monitoring of the beam energy. It calculates the value of the incoming beam

energy by using the Hall A arc field integral values and the arc beam position monitors and

records it into the data stream continuously. Frequent calibrations are done for this method

with the Arc method.

3.2.2 Beam Current

The beam current (charge) in Hall A is measured with a Beam Current Monitor(BCM)

that is located 25 m upstream of the target in the beam line. The Beam Current Monitor

system consists of an Unser monitor which is a Parametric Current Transformer (PCT),

two rf cavities, the electronics, and a data acquisition (DAQ) system. The BCM system set

up is shown in Fig. 3.6. The cavities and the Unser monitor are enclosed in a box so that

they can be isolated from any other magnetic field as well as any temperature variations.

The two cavities perform a relative beam current measurement. The measurement with

the rf cavities is relative because the output of these are not exactly the beam current but a

voltage that is proportional to the beam current. These cavities are made of stainless steel

and have dimensions of 15.48 cm in diameter and 15.24 cm in length. They are located

before and after the Unser (PRT) monitor along the beamline. Each of the cavities has

a magnetic field probe used to couple the beam signal out of the cavity. The cavities are

tuned to the resonant frequency of 1.497 GHz. The electron beam passing through each

cavity excites the TM010 mode at this frequency and it is picked up by an coaxial antennae

running along the outer shell coupled to the cavity. The output signal determined by the
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Figure 3.6: The BCM system reproduced from [11].

probe is proportional to the Q factor of the cavity. The Q factor is defined as

Q =
Ef

P
, (3.2)

where E is the total energy stored in the cavity, f is the resonant frequency and P is the total

dissipated power. The Q values of these cavities are ∼3000. The signals produced in the

cavities are transmitted to the electronics. The voltage of the signal is proportional to the

beam current. This measurement of the beam current by the cavities is calibrated with the

Unser monitor which performs an absolute measurement of the beam current. The details

of the working principle of the Unser monitor can be found in [91], [92]. The processing of

the output signal by the data acquisition is summarized below:

Electronics and DAQ

The basic process of operation of the BCMs can be summarized in the following steps.

• The output signal of each rf cavity is fed into a Down-converter where it gets split

into two parts: the sampled part and the integrated part.

• The sampled part is then fed into a high precision digital multimeter (DMM) and the

integrated part is sent to an RMS-to-DC converter as shown in Fig. 3.7.
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Figure 3.7: The electronics in the BCM system.

• The DMM output is a digital signal produced every second, which is the root-mean-

square (RMS) of the input sampled signal. In other words, this output signal from

the DMM is proportional to the average beam current over each second and is sent

to the computer through GPIB ports.

• The output of the RMS-to-DC converter which is now an analog DC voltage is fed

into a voltage-to-frequency converter (V-to-F). The output frequency is proportional

to the input DC voltage and is sent to a Fastbus scaler which is read by the DAQ

system. Thus, the output voltage and hence the frequency is proportional to the beam

current which is read by the scaler.

The detailed description can be found in [93].It is worthwhile to mention here that the

analog DC voltage from the RMS-to-DC converter is a non-linear function of beam current

for small currents below 5 µA. Hence, amplifiers with gain ×3 and ×10 are used to overcome

the effect and as a result, there are 3 signals coming out of each BCM. They are amplified

by a factor of 1 (the original signal), 3 and 10. Therefore, a set of six signals from the two

cavities (named as U1,U3,U10,D1,D3,D10) are sent to the scalers. U stands for Upstream,

D stands for Downstream, and the numbers represent the respective gain factors. The

calibration of the scaler signals are done with standard procedures. With these BCMs in
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the Hall, usually the charge for a real production run in any physics experiment can be

measured dwon to 1 µA within 0.5% accuracy [12].

3.2.3 Beam Position

Precise measurement of the position of the beam on the target is extremely crucial in any

experiment. The Hall A beamline has two Beam Position Monitors (BPM) located at

distances 7.524 m and 1.286 m upstream of the target which measure the position and the

direction of the beam on the target. The monitor that is closer to the target is referred to

as BPMB and the one further away from the target is referred to as BPMA. Each BPM has

a 4-wire antenna at ±45o relative to the Hall horizontal and vertical directions tuned to

1.497 GHz RF frequency as shown in Fig. 3.8. The calibration is performed with the wire

scanners or the superharps2. The superharps are located at 7.353 m and 1.122 m upstream

of the target close to the BPMs.

Figure 3.8: The beam position monitors.

The technique used to determine the relative position of the beam with the BPMs is

known as “difference over sum” technique. It is based on the comparison of the two induced

signals in the two opposite antennae when the electron beam passes through. The position
2The superharps consist of three wires. The orientation of the wires is such that one of them are vertical

and the other two make angles ±45◦ with respect to the vertical one. During measurement, the wires are
scanned across the beamline. Thus, the electrons hitting the wires create showers of particles which are
detected resulting in the determination of the position of the wires and hence the beam.
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of the beam on the target can be computed using the following equations:

Xb = κX · (18.87mm) · (Xp − αX ·Xm)
(Xp + αX ·Xm)

, (3.3)

Yb = κY · (18.87mm) · (Yp − αY · Ym)
(Yp + αY · Ym)

, (3.4)

where κX , κY are absolute conversion factors, αx, αY are relative gains and Xp, Xm, Yp, Ym

are the offset subtracted signals from the four wires. These signals are proportional to the

beam current and inversely proportional to the distance between the wires and the beam.

The relative position can be determined to within 100 microns for currents greater than

1µA. The details can be found in [94].

The Raster

In order to prevent the target from being overheated locally by the high intensity incident

beam, the electron beam is rastered3 on the target. This is essential because of the fact

that our target cell is made of thin glass containing high pressure 3He gas. The raster is a

pair of horizontal(X) and vertical(Y) air core magnetic dipoles located at a distance of 23

m upstream of the target center. Two modes, viz, the sinusoidal modulation mode and the

amplitude modulation mode can be used. In the sinusoidal mode, a sine wave of ∼18.3 KHz

drives both the X and Y magnets. There exists a relative phase difference of 90◦ between X

and Y magnet sine waves and they do not produce a closed Lissajous figure. The amplitude

of both the waves remain constant. With the beam rastered on the target in both vertical

and horizontal directions, a uniform energy deposition of the beam on the target cell is

achieved.

3.3 Beam Polarization

The electron beam can have a wide range of energy and intensity. Two methods of beam

polarization measurement are usually implemented in Hall A. One method uses the basic

process of Compton scattering (Compton Polarimeter) and the other is based on Møller

scattering (Møller Polarimeter). The former is mainly used for the medium to high beam

energies and high beam intensities whereas the latter is mostly useful for low to medium

beam energies and low beam intensities. Both will be discussed in the following subsections.
3The term rastered is used to describe the fact that the electron beam coming on to the target is projected

in such a way that the original diameter of the beam (∼ 100 µm) is enlarged to ∼ (2-3) mm on the target.
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3.3.1 Compton Polarimeter

The Compton polarimeter is used to measure the longitudinal polarization of the high in-

tensity electron beam having energy range of 3 to 6 GeV that is injected into Hall A. The

measurement is basically based on the Compton effect discovered by Arthur Holly Compton.

The effect is the electromagnetic interaction between electrons and photons which results

in the electron recoiling with part of the given energy and a photon with the rest of the

energy being emitted in a different direction with respect to the incident direction.

In Hall A, the polarization of the beam is one of the essential parameters that needs to be

measured as accurately as possible without affecting the data taking process of the exper-

iment. Unlike the Møller measurement (discussed in the next subsection), the Compton

measurement is non-invasive. In this measurement, the polarized electron beam is deviated

from the main beamline and is guided in such a way that it is scattered off circularly polar-

ized photons (from a 240 mW infra-red laser operating at 1064 nm wavelength). The cross

sections of the polarized electrons scattered off polarized photons as a function of their en-

ergy and the scattering angle can be accurately calculated. The cross sections are different

for the electrons scattered off the photons with the helicity states parallel to the photons

and for those whose helicity states are opposite to those of the photons. If we denote the

cross section of the electrons with parallel orientations with respect to the photons by σ+

and the anti-parallel orientations by σ−, then the theoretical asymmetry or the analyzing

power of the process can be defined as

Ath =
σ+ − σ−
σ+ + σ−

. (3.5)

Now the orientation of the electron spin in the beam (or the helicity) is flipped by an angle

of 180◦ at a rate of 30 Hz. If N+ and N− represent the number of events in two opposite

helicity states of the electrons, then the experimental asymmetry can be written as

Aexp =
N+ −N−
N+ +N−

, (3.6)

where the events signify the count rates normalized to the beam intensity. Then the po-

larization of the electron beam can be evaluated by the following equation with the known

polarization Pγ of the photons:

Pbeam =
Aexp
PγAth

. (3.7)

65



More details of the calculations and the procedures can be found in [12].

The Hall A Compton polarimeter is located at the entrance of the hall. It consists of

a magnetic chicane, a Fabry-Perot cavity serving as a photon target housed on an optics

table, a electron detector, and a photon detector. A schematic of the Compton polarimeter

is shown in Fig. 3.9.

Figure 3.9: Schematic of the Compton polarimetry set up.

The magnetic chicane has four dipoles D1, D2, D3, and D4 that can deliver a magnetic

field up to 1.5 T. (D1,D2) deviate the original electron beam vertically down and guide it to

pass through the optical cavity so that it can interact with the photon beam at the center

of the cavity. This point is the Compton Interaction Point (CIP). Then (D3,D4) deflect the

scattered electrons vertically up and guide to the original beamline and hence to the Hall

A target. The photon source is a 240 mW CW Nd:YaG laser beam at wavelength 1064 nm.

This laser beam is then amplified by a resonant Fabry-Perot cavity which is 85 cm long. It

uses two high-finesse mirrors to amplify the incoming beam. By locking the laser frequency

to that of the cavity by a feedback mechanism, an amplification factor of 7300 is achieved

which corresponds to a photon beam power of 1680 W inside the cavity [12]. A rotatable

quarter wave plate is used to control the circular polarization of the photon beam. The

photon polarization is typically ∼99%. The photon detector is an electromagnetic calorime-

ter which detects the Compton backscattered photons and it consists of PbWO4 crystals

(2 cm×2 cm×23 cm). The electron detector has four silicon strip planes, each containing

twelve strips.
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It is essential for the electron beam and the photon beam to have the relative crossing

angle very small. The fields of the dipoles are varied to adjust the electron beam vertically so

that the CIP is at the center of the cavity. Data are recorded once the compton luminosity

is maximized. Either single electrons, single photons, or the coincidences can be used as

a trigger for the data acquisition. The positions of the scattered electrons in the electron

detector and the energy of the backscattered photons in the photon detector give the energy

of the Compton events.

3.3.2 Møller Polarimeter

A Møller polarimeter is used to measure the polarization of the electron beam at low

intensities. This method is invasive and it is usually effective only for low beam energies

(up to ∼4 GeV). The method uses the Møller scattering of polarized electrons from the

beam off polarized atomic electrons. The reaction is given by:

~e− + ~e− −→ e− + e−. (3.8)

The cross section of this process is a function of the beam and the target polarizations and

can be expressed as

σ ∝ (1 +
∑

i=x,y,z

(Aii · Pit · Pib), (3.9)

where P t is the target polarization, P b is the beam polarization, A is the analyzing power

and i = x, y, z are the projections of the polarizations. Now assuming that the beam is

along the z-axis and the x − z plane is the scattering plane, the analyzing power can be

defined as [93]

Axx = − sin4θCM
(3 + cos2θCM )2

, (3.10)

Ayy = −Axx, (3.11)

Azz = −sin
2θCM · (7 + cos2θCM )

(3 + cos2θCM )2
. (3.12)

As we can see, the analyzing power is a function of the scattering angle θCM in the cen-

ter of mass frame and independent of the beam energy. The maximum analyzing power

Azz
max=7/9 at θCM=90◦ for longitudinal polarization of the beam. The transverse compo-

nents give rise to small asymmetries and hence a low analyzing power as can be seen from
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the above equations.

The Møller polarimeter consists of a polarized target, a magnetic channel with three

quadrupoles and a dipole, and a detector made of lead glass and scintillators. The schematic

is shown in the Fig. 3.10.

Figure 3.10: Schematic of the Møller polarimeter reproduced from [10].

The polarized electron target for the Møller polarimeter is located 17.5 m upstream of

the Hall A target. It consists of 5 ferromagnetic foils on a sliding rail. Two of foils are made

of Fe and the rest are made of supermendur alloy [93]. The target is saturated magnetically

along the beam by two external Helmholtz coils which produce a field of 350 G. In the

ferromagnetic coil, about 2 electrons/atom can be polarized giving rise to average electron

polarization of ∼ 8%. As the foils can be rotated from 20◦ to 160◦ with respect to the

beam, the effective polarization of the target can be written as

P t = P f · cosθt, (3.13)

where P f is the polarization of the foil derived from special magnetization measurements of

the foil samples oriented at an angle θt with respect to the beamline. The angle is measured

using a scale on the target holder.

The electron pairs produced in the scattering process are deflected by a spectrometer

(three quadrupole and one dipole magnets) towards the detector system within a certain
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kinematic range. The azimuthal acceptance is restricted by a collimator in front of the

dipole and the acceptance in θCM is limited by the magnetic field strength of the dipole

as well as the vertical dimensions of the detector system. Usually the Møller Polarimeter

detects scattered electron pairs in the range 75◦ < θCM < 105◦. The Møller detector has

two identical modules placed symmetrically about a vertical plane containing the beam

axis [12]. The coincidence events are detected and the longitudinal beam polarization is

determined as

Pz
b =

N+ −N−
N+ +N−

· 1
P f · cosθt· < Azz >

, (3.14)

where N+ and N− are the counting rates with two opposite orientations (180◦ relative angle)

of the beam and target polarizations. The analyzing power < Azz > can be computed by

a Monte-Carlo calculation of the spectrometer acceptance and is about 0.76. This invasive

measurement can provide a statistical accuracy of about 0.2% and the systematic errors in

the measurement can be neglected.

Møller beam polarization results:

A series of Møller measurements were performed during the experiment E06-010. The

results are summarized in Table 3.2 and plotted in Fig. 3.11 [95]. In addition, the Compton

polarimeter was used to monitor the polarization of the beam continuously during the data

taking. However, the Compton polarimeter was not working properly due to some technical

issues. Hence, only the results from the Møller measurements were used in different stages

of data analysis.

Hall A Detector Package:

In E06010, the hadrons (pions, kaons, and protons) were detected in coincidence with the

scattered electrons. The standard Hall A High Resolution Spectrometer (LHRS) was used

to detect and separate different hadrons while the BigBite spectrometer was used to detect

the scattered electrons. The LHRS was placed at an angle of 16◦ to the left with respect

to the incoming electron beam and the BigBite was sitting at an angle of 30◦ to the beam

right. Both spectrometers consist of different detectors to perform various operations. The

detector packages and their working principle in each of the spectrometers are discussed in
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Table 3.2: The Møller polarization measurement results during E06-010.

date Møller results ± stat. ± sys. [%]
11/02/2008 88.41 ± 0.22 ± 0.02
11/12/2008 -74.94 ± 0.14 ± 0.03
11/02/2008 -74.46 ± 0.11 ± 0.03
11/02/2008 -74.22 ± 0.17 ± 0.03
11/02/2008 80.97 ± 0.19 ± 0.03
11/02/2008 -54.16 ± 0.20 ± 0.03
11/02/2008 -79.16 ± 0.16 ± 0.03
11/02/2008 -80.00 ± 0.18 ± 0.03
11/02/2008 -81.12 ± 0.15 ± 0.02
11/02/2008 -79.01 ± 0.13 ± 0.02
11/02/2008 -75.84 ± 0.16 ± 0.02

the following sections.

3.4 Hall A Left High Resolution Spectrometer (LHRS)

The Left High Resolution Spectrometer (LHRS) is one of the two identical standard Hall A

spectrometers that are designed to do high precision and high resolution experiments. Both

the right and the left spectrometers share the same design and characteristics. Only the

LHRS was used in the experiment to detect pions and kaons, and therefore only the LHRS

is described here. The original requirements behind the design of the spectrometer and its

associated instrumentation are to achieve an accuracy of ∼10−4 in the determination of the

relative particle momenta and ∼0.1 mr for the scattering angle. With the present design

of the spectrometers, many experiments have been performed with great success and the

physics goal of an absolute accuracy of ∼1% has been achieved as planned in the Hall [93].

3.4.1 LHRS Design and Characteristics

The central momentum of LHRS is 4 GeV/c with a vertical bending plane and a 45◦ bending

angle. The structure consists of two superconducting quadrupoles(QQ), then a 6.6 m long

dipole (D) followed by a third superconducting quadrupole(Q). This structure is sometimes

denoted as DDQD magnet configuration. The second and the third quadrupoles are identical

in design and construction because they both have similar field and size requirements. The

layout of the LHRS is shown in Fig. 3.12 and the important characteristics are summarized
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Figure 3.11: The Møller measurement results during E06010.

Table 3.3: LHRS characteristics

Configuration QQDQ
Optical Length 23.4 m
Bending Angle 45◦

Momentum range P 0.3-4.0 GeV/c
Momentum acceptance -4.5% < δp

p <+4.5%
Momentum resolution 1×10−4

Angular range 12.5◦-150◦

Horizontal angular acceptance ±30 mrad
Vertical angular acceptance ±60 mrad
Horizontal angular resolution 0.5 mrad
Vertical angular resolution 1.0 mrad
(Solid angle) δp

p
=0,yo=0

6msr

in Table 3.3. The details can be found in Refs. [12], [93].

3.4.2 Detector Package

The detector package of the LHRS is located inside a Shield Hut(SH) at the end of the

spectrometer magnet assembly. The shield hut protects the detectors and the data acqui-
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Figure 3.12: The schematic of the LHRS showing the geometrical configuration of the
QQDQ layout. The first VDC plane is also shown [12].

sition(DAQ) electronics from the radiation background in the Hall. The detector package

for the transversity experiment consists of the following detector components:

• A pair of Vertical Drift Chambers (VDC) to provide information about the

tracking.

• Two Scintillator Planes (S1 and S2m) to provide the timing information and

the main trigger.

• An Aerogel C̆erenkov and a Gas C̆erenkov for particle identification.

• Two sets of Lead-Glass counters (Pion-Rejector1 and Pion-Rejector2) to pro-

vide additional information about particle identification.

• A RICH detector for particle identification. This is a special C̆erenkov counter used

in the experiment to separate pions and kaons. Its not a standard part of the detector

package.

Fig. 3.13 shows a schematic diagram of the detector package from the side. The indi-

vidual detectors are installed on a retractable frame. Thus, if needed for repair or reconfig-

uration, each of them can be moved out of the SH. The DAQ electronics are also mounted

on the same frame.
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Figure 3.13: The layout of the detector packages in the LHRS [13].

3.4.3 Vertical Drift Chambers (VDCs)

Design and Characteristics

The Vertical Drift Chambers are used to provide information about the tracking of the

scattered particles. There are two VDCs in each spectrometers which determine the position

and track of a scattered particle. Each of these two VDCs is composed of two wire planes

in the standard UV configuration. The wires in the U and V planes are perpendicular to

each other and lie in the laboratory horizontal plane. Both the planes are oriented at 45◦

with respect to the nominal particle trajectory. The distance between the two VDC planes

is 335 mm and the separation between each pair of U and V planes is 26 mm as shown the

Fig. 3.14. There are a total of 368 sense wires in each plane, spaced 4.24 mm apart [12].

The wires are made of Au-plated tungsten. The VDCs are constructed and placed in such

a way that the lower VDC is positioned to coincide with the spectrometer focal plane and

the second VDC is located above it (as shown in the figure) to enable precise angular re-

construction of the particle trajectories [96].
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The operation of the VDCs during the data taking is based on four subsystems: the gas

system, the high voltage, the low voltage and the readout system. The chamber gas is pro-

vided by the Hall A Wire-chamber Gas System(HAWGS). The gas supplied to the VDCs is

a mixture of (62%/38% by weight) argone and ethane with a flow rate of 10 liter/hour [96].

There are three high voltage planes at about −4 kV in each VDC, one is in the middle

of the U and V planes and the other two are on the two opposite sides (top and bottom).

High voltage is provided by a single channel of a Bertan 377N HV power supply. All these

subsystems are well explained in [93].

Figure 3.14: Schematic diagram of the LHRS VDC planes. Reproduced from [12].

Basic Principle and Theory

The basic principle which governs the operation of the drift chambers is based on the

ionization of the gas molecules in the chambers and the drift of the electrons in an electric

field. When a charged particle travels through the gas in the chamber, it transfers energy to

the gas by ionizing its molecules and atoms. The mean rate of energy loss of the traversing
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charged particle is given by the Bethe-Bloch equation:

dE

dx
=

4πNoZ
2e4

mv2
(
Z

A
)[ln(

2mv2

I(1− β2
)− β2], (3.15)

where v is the velocity of the particle, β=v
c , E is the energy of the particle, x is the distance

travelled by the particle, e is the charge of an electron, m is the rest mass, Z is the atomic

number, A is the mass number and No is the number density.

The energy loss of the particles to the gas results in the production of electrons and ions

along its trajectory. This is called the primary ionization. These electrons then are acceler-

ated towards the wires by the electric field via a geodetic path which is the path traversed

in the least time by the electrons. The electric field inside the chamber is constant through

most of the drift area except near the sense wires where it becomes almost like a purely

radial (1/r) field. The electrons drift along the field lines with almost constant drift velocity

(∼50µm/ns). But in the very close proximity of the sense wires, they suddenly enter into

a field region where the field increases rapidly. Hence the electrons in this region acquire

enough energy to produce secondary electrons which create an avalanche effect. This effect

eventually creates a signal in the sense wire and it is detected by the electronics.

The VDCs feature a five cell design as shown in Fig. 3.15. This means that a particle

with a track at the nominal angle of 45◦ with respect to the laboratory horizontal plane

fires five wires. On the other hand, the particles having an extreme angle (52◦) track fire

only three.

The fired wires are read out with TDCs (Time-to-Digital converters). The TDCs are

operated in common stop mode and hence a larger TDC signal corresponds to shorter drift

time. Since the drift velocity is known, the drift distance from the trajectory of the particle

to each fired wire can be extracted from the TDC readouts. Thus the trajectory of a particle

can be reconstructed by combining all the drift distances from all the fired wires together.

A position resolution of σx(y) ∼100 µm and an angular resolution of σθ(φ) ∼0.5 mrad were

achieved in the focal plane.
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Figure 3.15: The 5-cell configuration in LHRS VDCs [13].

3.4.4 Lead-Glass Counters

Two sets of lead glass counters are used for particle identification. Those are typically

called the pion rejector layer 1 and layer 2. Together with an Aerogel and a Gas C̆erenkov

detector, the pion rejector helps in separating the electrons from the pions in the LHRS. In

our case, since we wanted to distinguish pions from the electrons as efficiently as possible,

these lead-glass counters provided useful particle identification. Among the GeV/c charged

particles passing through the lead glass counters, only the electrons develop electromagnetic

showers while the heavy hadrons can not develop as strongly as the electrons because of

their comparatively longer mean free path. The energy deposited by the particles in the

counters is used to identify different particles since the signal in the counters is linearly

proportional to the energy deposition. In our case, we have two distributions of energy: low

ADC signals for hadrons and high ADC signals for electrons.

The construction of both layers of the pion rejector is the same. Each layer consists of

17 short blocks and 17 long blocks of lead glass, forming a 2(transverse)×17(dispersive)

array. This is shown in Fig. 3.16. Thus, both the layers are composed of 34 blocks and each

has dimensions of 14.5 cm × 14.5 cm × 30(35) cm. The gap between two blocks in the first
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layer is covered by the block in the second layer, and vice versa as shown in Fig. 3.16.

Figure 3.16: Pion Rejector: Layer1 and Layer2. Reproduced from [12].

3.4.5 Gas C̆erenkov Counter

The Gas C̆erenkov counter in the LHRS is one of the most efficient particle identification

detectors used to select or reject the electrons from other particles. In our case, the Gas

C̆erenkov counter was used to reject the detected electrons which were treated as the largest

background in the detected hadron samples. The gas C̆erenkov detector is filled with CO2 at

atmospheric pressure and is mounted between the Aerogel detector and the S2m scintillator

plane.

A threshold gas C̆erenkov detector is based on the principle of C̆erenkov radiation. When

a high energy charged particle moves in a medium of refractive index n with a velocity v

higher than that of light in the same medium, i.e. β > 1
n , a characteristic electromagnetic

radiation is emitted. This is called the C̆erenkov radiation and the phenomenon is termed

as C̆erenkov effect. The radiation propagates in a direction forming an angle θ with the

path of the charged particle given by:

cos(θ) =
1
βn

, (3.16)

where β is the ratio of the particle velocity to that of light in vacuum [97].

The reason the high energetic particle emits C̆erenkov light is that when the particle passes

through the medium, it momentarily polarizes the atoms along its track, making them

electric dipoles. Now once the particle has passed, this polarized state collapses and each

atom emits C̆erenkov radiation. If the velocity of the charged particle v is lower than

that of light, the dipoles created by it are arranged symmetrically around the particle’s

path. This makes the polarization perfectly symmetrical which results in zero net dipole
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moment and hence no radiation. But if v > c/n, this polarization is no longer symmetrical

and hence the net non-vanishing dipole moment leads to the emission of C̆erenkov radiation.

The refractive index of the CO2 gas used in the detector is 1.00041 which gives a threshold

momentum of ∼ 17 MeV/c for electrons and 4.8 GeV/c for pions. Therefore, for the desig-

nated momentum range 0.30 ∼ 4.0 GeV/c in the LHRS, only electrons can emit C̆erenkov

radiation and generate an ADC signal.

The gas C̆erenkov detector has 10 spherical mirrors positioned in a 2(horizontal)×5(vertical)

array. Each of the mirrors has a radius of curvature of 90 cm and is coupled to a PMT which

is placed at a distance of 45 cm from the mirror. As a result, the parallel rays of incident

light emitted by the electrons are approximately focused onto the PMT after reflection.

Then the PMT converts the incident light to an electronic signal and the signal is then sent

to an ADC attached to it. The summation of all the ADC signals gives the information

about the total amount of light emitted by the particle.

Although pions do not have the threshold momentum to produce any C̆erenkov light in

the detector, they can still interact with the atoms in the medium and create secondary

or δ electrons. Then those electrons can emit C̆erenkov light and produce signals in the

ADCs. But the δ electrons do not move in the same direction as the scattered electrons

and hence the emitted light is not efficiently collected by the mirrors. These summed ADC

signals for the δ electrons are mostly single photo-electron peaks. On the other hand, the

C̆erenkov light emitted by the scattered electrons corresponds to the multi photo-electron

peak in the ADC signals. The number of photo-electrons in each PMT determines the

efficiency of the separation of the single photo-electron peak from the multi photo-electron

peak and hence the PID quality of the detector. During the experiment, the average number

of photo-electrons for each PMT was ∼6. The PID efficiency analysis will be discussed in

chapter 5.

3.4.6 Aerogel C̆erenkov Counter A1

A1 is one of the Aerogel diffusion type counters that is used for the particle identification

which is based on the detection of C̆erenkov radiation as discussed in the previous subsection.
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A1 has 24 PMTs (Burle 8854). The aerogel radiator used in A1 is 9 cm thick and it has a

refractive index of 1.015 which results in a threshold of 2.84 GeV/c for kaons and a threshold

of 0.803 GeV/c for pions. Hence, during the normal operation with the LHRS momentum

between 0.42 - 2.8 GeV/c, pions fire the A1 and kaons do not. A schematic diagram of the

A1 counter is shown in the Fig. 3.17.

Figure 3.17: Schematic of the A1 counter.

In the experiment, A1 was used to select the pions and to reject the kaons which pro-

duced the single photo electron peak in the ADC spectrum at the channel 100 (after cali-

bration).

3.4.7 RICH Detector

The Hall A Ring Imaging C̆erenkov (RICH) detector was mainly used in this experiment to

identify kaons, pions, and protons. Using the RICH detector in addition to Time of Flight

(TOF) to distinguish between pions and kaons helped tremendously in this experiment.

The RICH detector was placed between the Aerogel and the Gas C̆erenkov detector in the

detector hut. The basic design of the RICH detector is identical to the CERN Alice HMPID

detector [93]. But it has been modified to accommodate different specific requirements for

different experiments. It has a proximity focussing geometry and it does not have any

mirrors which makes the detector compact (total length less than 50 cm) and relatively

thin (18%Xo). The working principle of the adopted RICH detector in the experiment is
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shown in the Fig. 3.18.

Figure 3.18: The RICH detector working principle [13].

When a charged particle traverses through the liquid freon, it emits C̆erenkov radiation.

The 1.5 cm thick liquid radiator is housed in a vessel made of NEOCERAM on all sides

except the exit window. NEOCERAM is a glass-ceramic material with mechanical and

thermal properties almost identical to quartz. The exit window is made of 0.5 cm thick

pure quartz. The use of a liquid radiator has been imposed by the momentum range (around

2 GeV/c) of the particles to be identified. The C̆erenkov photons, emitted along a conical

surface, are refracted by the freon-quartz-methane interfaces and strike a pad plane after

traveling a proximity gap of 10 cm filled with methane.

The pad plane is covered by a thin substrate of CsI which acts as a photon converter.

An electric field of ∼2100 V/2 mm is produced between the pad plane and an anode wire
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plane in front of the pads which accelerates the emitted photo-electrons, thus forming a

multi-wire proportional chamber (MWPC). During the operation, the anode wires collect

the avalanche of the electrons while the counterpart ions are collected by a cluster of pads,

each of which is connected to the input channel of a multiplexed sample-and-hold electron-

ics module, housed on the back of the pad plane. Then finally the cluster of pads hit by

the photons should be scattered around a ring (ellipse) while one cluster coming from the

charged particle track should be located in the central region of the ring. The secondary

electrons produced by the ionization of the counting gas by the charged particles in the

proximity gap are prevented from reaching the MWPC by a drift electrode. This electrode

is positioned close to the quartz window and its operating voltage is about 250 V. The

MWPC of the RICH detector has to be operated with pure methane to achieve the de-

signed performance.

An upgrade of the HallA standard RICH was done as a requirement of the transversity

experiment. Since this experiment measures 2.4(±5%)GeV/c π± and K± mesons single spin

asymmetries and due to the fact that the pion production is large with respect to kaons,

but the asymmetries are of the same order, a π : K rejection of 10−3 was required. The

upgrade basically involved the extension of the photon detection surface which improved

the photon collection and at the same time permitted to increase the proximity gap and

consequently the angular distribution. The new upgraded version used in the experiment

has a net surface area which is 1.65 times larger than the previous one. The larger photon

detection plane permitted a longer proximity gap (from 100 to 175 mm) and therefore a

smaller overall angle reconstruction error [98].

3.4.8 S1 and S2m Scintillator Planes

There are two scintillator planes in the LHRS in the standard detector configuration, viz,

S1 and S2m. These planes are used to form various triggers specific to the requirements

of the experiment and they also provide timing information which is quite important for

particle identification.

The S1 scintillator plane consists of six paddles, each with an active area of 29.5 cm ×

35.5 cm. Each of the paddles is viewed by a 2” photomultiplier tube (Burle 8575) on each
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end. The S1 paddles are installed at a small angle with respect to the S1-plane and overlap

by 10 mm. The S2m scintillator plane consists of sixteen paddles, each of them having a

dimensions of 17” × 5.5” × 2” thick. But the paddles do not overlap unlike the S1 plane.

The timing resolution per plane is approximately 0.30 ns (σ). A schematic diagram of the

scintillator is shown in Fig. 3.19.

Figure 3.19: A schematic of the S1 scintillators for reference. S2m has the same structure
except it has 16 paddles and the paddles do not overlap. This figure is reproduced from [13].

During the experiment, S1 and S2m were used for the trigger formation. However, the

right PMT signals in S2m were treated as the reference for all the timing information. This

will be discussed in the trigger section later. All the time-of-flight and coincidence timing

calibrations were performed with respect to the timing information from the S2m.

3.5 The BigBite Spectrometer

The BigBite spectrometer was used to detect the scattered electrons coincident with the

hadrons detected in the left high resolution spectrometer (LHRS). The BigBite detector

package was placed at a forward angle of 30◦ to the right with respect to the incoming

beam. It is a large momentum, non-focusing spectrometer and it consists of a large dipole

magnet and a detector assembly. During the experiment, the dipole magnet was driven by

full current to produce a maximum field of 1.2 T.
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Figure 3.20: The schematic of the BigBite spectrometer package [14].

The detector assembly consisted of three multi-wire drift chambers, a gas C̆erenkov de-

tector, a scintillator plane, and two lead glass calorimeters known as shower and preshower.

The BigBite spectrometer detector package is shown in Fig. 3.20. The gas C̆erenkov in the

BigBite spectrometer was not used in the transversity experiment and will not be discussed

here.

3.5.1 Multi-Wire Drift Chambers

The multi-wire drift chambers contained three different sets of wire chambers which were

∼35 cm apart from each other. Each of these had U-U′, V-V′ and X-X′ planes which

provided a very high spacial resolution of 180 µm. The orientation of the U, V and X

planes is shown in the Fig. 3.21.

The U and V wires were at ±30◦ with respect to the X wires which were horizontal.

Each chamber had sense wires (20 µm in diameter) which were 1 cm apart from each other

and had a field-shaping wire in between. As typical for drift chambers, the wire planes were

surrounded by cathode planes. The distance between a cathode plane and the wire planes

was about 3 mm whereas the wire planes were 6 mm apart. The chambers were filled with
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Figure 3.21: The orientation of the U, V and X planes in MWDC.

an equal mixture of argone and ethane, kept slightly above atmospheric pressure [10].

The working principle of the drift chambers is the same as explained in the earlier section

for the LHRS. The electrons produced in the ionization of the gas mixture by a charged

particle traversing through it triggered the sense wires. The wires were set to some definite

potential difference and hence the generated charges drifted towards the wires, creating the

electrical signals which were then sent to a discriminator and were read out by a time-to-

digital converter (TDC).

3.5.2 Scintillators

A plane of 13 scintillator paddles was installed in between the preshower and the shower

detectors to provide the timing information. The scintillators had a timing resolution of

∼300 ps and each of them was attached to two photomultiplier tubes at each end. The signal

from each photomultiplier tube was sent to an ADC and a TDC through an amplifier. The

timing resolution was used to reconstruct the time of the electron at the drift plane when it

was associated with the track of the electron. The timing resolution was very crucial for this

coincidence experiment as a part of particle identification. When combined with the left

spectrometer resolution of ∼130 ps, the BigBite resolution of ∼300 ps gave a coincidence

timing window of ∼450 ps which helped achieving a clean separation of the real coincidence
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pions and electrons from the kaons in the left spectrometer. The detailed analysis of the

coincidence-time-of-flight will be discussed in chapter 5.

3.5.3 Shower and Preshower Detectors

The shower and preshower detectors in the BigBite detector assembly were used for particle

identification as well as to form one of the triggers for the electrons. The preshower was

located at a distance of 0.85 m from the first drift chamber plane and consisted of 54 lead

glass blocks arranged in 2 columns and 27 rows. Each block had a dimension of 35 cm ×

8.5 cm. The shower had 189 lead glass blocks, each having a dimension of 8.5 cm × 8.5

cm. They were arranged in 7 columns and 27 rows at a distance of 1 m from the first drift

chamber plane. A schematic diagram of the shower and preshower detector is shown in the

Fig. 3.22.

Figure 3.22: Schematic of preshower and shower blocks. The scintillators are also shown.

The electromagnetic shower produced by a particle entering the lead glass block gener-

ated C̆herenkov light which was collected by the photomultiplier tube attached to it. Then

the signal was sent to an ADC after having it passed through an amplifier. Another copy

was sent to a set of summing modules. A copy of the summed output was then sent to

an ADC and another copy was sent to a TDC through a discriminator. The amplitude

of the summed signal was roughly linearly proportional to the energy of the particle. The
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combination of the shower and preshower signals gave an energy resolution of ∼8% of the

total energy.

3.6 Hall A Data Acquisition System (DAQ)

The data acquisition (DAQ) systems in Hall A use CODA developed by the data acquisi-

tion group at Jefferson Lab. CODA stands for CEBAF On-line Data Acquisition system

which is a toolkit of distributed software components from which data-acquisition systems

of varying degrees of complexity can be implemented [12]. The DAQ system also includes

the hardware elements such as front-end Fastbus and VME digitization devices (ADCs,

TDCs, scalers), single board VME computers, a mass storage tape silo (MSS), etc., along

with the other software components. The trigger supervisor is a customized support module

developed at Jefferson Lab which will be discussed in the next section. The most important

custom software components are the read-out controller (ROC) which runs on front-end

crates, the event builder (EB) and the event recorder(ER) which run on a Linux worksta-

tion, the event transfer (ET) system which allows the distributed access to the data online

and the Run Control process, which allows the users to control the data taking, changing

the CODA configurations, etc.

Fig. 3.23 shows an example of a CODA configuration. Using various combinations of the

ROCs, different CODA configurations can be realized as per the requirement of the spe-

cific experiment. The trigger supervisor digitizes the signals from the different detectors

and reads out the crate by executing a set of C routines (known as CODA readout list).

The data from the crates are collected and put into structured CODA events by the EB

which are then recorded as a CODA file on disk by the ER. The transfer of the data among

different components is achieved via the ET library.

3.7 Trigger Formation and Electronics

The formation of different triggers generated from the detectors and the related electronics

are the essential parts of the DAQ. The trigger supervisor (TS) and the triggers related to

the Left High Resolution Spectrometer (LHRS) and the BigBite spectrometer are discussed

in this section. More details can be found in [15].
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Figure 3.23: The general flow chart of the CODA configuration [15].

The Trigger Supervisor (TS) :

This is the central part of the data acquisition process during the experiment which connects

the ROCs and the triggering system. The hardware contains a 9U multi-functional VME

board and several ECL inputs. There are 8 input channels to accept the triggers named T1

to T8. Once multiple triggers are accepted and pre-scaled, the TS generates a signal known

as L1A (level-1 accept) which is used for gating and timing the front-end electronics. The

status of the ROCs is monitored by the TS so that during the processing of the data by the

ROCs, no additional trigger is accepted by the TS, thus making the data acquisition and

the trigger system perfectly synchronized.

The Trigger Electronics for LHRS :

The main trigger in the LHRS was formed by requiring that both the S1 and S2m scintilla-

tor paddles have a hit, i.e. one paddle in S1 and one paddle in S2m have a hit on both sides.
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In other words, both the left and right PMTs in each paddle should have a signal to fulfill

the requirement for the trigger formation. This is known as T3 trigger and the right side

PMT signal of the S2m scintillator paddle serves as a reference for this trigger. Another

trigger, T4, can also be formed, in general, which requires two out of three detectors have a

hit. In this case, in addition to S1 and S2m, the Gas C̆erenkov serves as the third detector.

This was not used in E06010 and hence will not be discussed here. The gates for the ADCs

and TDCs were generated using the L1A signal and the S2m PMT signals with the retiming

circuit [15]. The TDCs in the S1 and S2m scintillators were common-start single hit LeCroy

1875 TDCs with a timing resolution of 50 ps. The trigger diagram for the LHRS is shown

in Fig. 3.24.

The Trigger Electronics for BigBite :

The BigBite spectrometer was used as an electron arm and it contained the preshower

and shower blocks as described in the earlier sections to select the electrons. The trigger

was formed to select the electrons by measuring the total energy deposited by the parti-

cles in the preshower and shower blocks. The total energy deposited by a particle in the

preshower and shower detectors was determined by forming a total hardware sum (TSUM)

of the two overlapping rows of the preshower and shower detectors as shown in Fig. 3.25.

4 blocks (2×2) in the preshower detector and 14 blocks (2×7) in the shower detector were

considered for the deposition of energy. The summation of the energy deposition was done

separately for both these detectors using LeCroy 428F modules (preshower) and custom

built summing modules (shower) and then the “sum signals” from both were combined

together to form the TSUM. This TSUM signal (analogue signal) which is proportional to

the total energy deposited by the particle was then sent to a discriminator. The threshold

of the discriminator could be adjusted following the experimental requirement to form the

trigger. This trigger was called the T1 trigger. Fig. 3.26 shows a schematic diagram of the

electronics for the triggers formed in BigBite spectrometer.

There were other triggers formed in the BigBite spectrometer to satisfy various re-

quirements for parasitic experiments that ran along with the E06010. Those are listed in

Table 3.4 along with the main triggers.

The TDCs used in the scintillators were common-stop multi hit F1 TDCs with a resolu-
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Table 3.4: The different triggers formed during the experiment. T1, T3 and T5 are the
relevant ones.

Trigger Type Description
T1 BigBite lead-glass (low threshold)
T2 BigBite Gas C̆erenkov
T3 LHRS singles (S1 AND S2m)
T4 LHRS (S1/S2m/Gas C̆erenkov) efficiency
T5 Coincidence (BigBite T1 AND LHRS T3)
T6 BigBite lead-glass (high threshold)
T7 BigBite Gas C̆erenkov and lead-glass overlap
T8 Pulser (1024 Hz clock)

tion of 60 ps. LeCroy 1881 ADCs were used to read all the PMT signals in the calorimeter

and the scintillators. The ADC gate width was ∼ 240 ns.

Coincidence Trigger :

The coincidence trigger T5 formed by the overlapping of T1 and T3 triggers in time de-

scribed above was the most important trigger for this experiment. The experiment was

devoted to detect the hadrons in the LHRS that were coincident with the scattered elec-

trons detected in BigBite. Hence in order to form the coincidence trigger, the exact trigger

formation time and the time-of-flight of the detected particle in both the spectrometers had

to be determined. Once the trigger formation time and the time-of-flight information are

known, T1 and T3 triggers were forced to overlap by adjusting the cable delays in both of

them. The T5 trigger logic and the relative timing diagram of all the triggers are shown in

Fig. 3.27 and Fig. 3.28.

3.8 Scaler and Dead Time Measurement

Scalers were used to count the raw signals from the PMTs on different detectors as well

as from the Beam Current Monitors (BCM), thus providing various information regarding

the raw rates for different types of triggers and beam current. The detailed information

about the scalers is reported in [15]. For this experiment, five scalers were configured de-

pending upon the helicity states of the incoming electron beam and the target spin. Out
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of them, four scalers were gated as (++), (+−), (−,+), and (−−) where the first quantity

in the parentheses is the target spin state and the second one is the beam helicity. The

last one was not gated by any beam or target helicity and termed as ungated scaler. All

these five scalers were also gated with the run period i.e. they counted only when the

run was started and stopped counting as soon as the run was terminated. The run gate

was obtained from the trigger supervisor. All these signals were finally sent to the control

bit on an SIS3800 scaler for gating purpose and they were read out from the server by VME.

The scalers were used to determine the dead time during the data taking process. Two

kinds of dead time were realized in practice : electronic dead time (EDT) which occurred in

the front end electronics due to high rate of data taking and DAQ dead time which was due

to the DAQ electronics. During the process of data acquisition, the trigger supervisor was

always synchronized with the ROCs and hence it only accepted triggers when the ROCs

were not busy handling the signals. However, during the period when the ROCs processed

the data which was between 300 µs to 500 µs there were a lot of events ignored by the trigger

supervisor. Those events were lost due to the waiting period of the trigger supervisor and

had to be corrected for in the data analysis.

The electronic dead time was measured by sending a pulser of 12.5 Hz to the front-end

electronics and comparing the number of pulses recorded by the DAQ and the number of

pulses originally sent. The electronic dead time was reasonably small as compared to the

DAQ dead time. The DAQ dead time can be expressed as:

DT = 1− p× nr
nt

, (3.17)

where the quantities are defined as follows:

• nr = number of events recorded by a particular trigger

• nt = total number of events occurred due to the respective trigger

• p = pre-scale factor for the trigger
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Figure 3.25: The preshower and shower energy sum formation for the trigger in BigBite [15].
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Figure 3.27: Schematic of the coincidence trigger logic [15].

Figure 3.28: The relative timing scheme of the triggers used in E06010. The timing of the
T5 is given by the leading edge of T1 [15].
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CHAPTER 4: THE POLARIZED 3He TARGET

This chapter is dedicated to the description of the polarized 3He target used in experiment

E06010 in Hall A at Jefferson Lab. Several other experiments had used a polarized 3He

target as an effective neutron target in Hall A before. The basic principle of optical pumping

to polarize the 3He atoms, the experimental setup of the target system, different polarimetry

techniques to measure the polarization, and the polarization analysis are presented in this

chapter.

4.1 Polarized 3He Nuclei As An Effective Neutron Target

Experiment E06010 aimed at measuring single spin asymmetries (SSA) on a transversely

polarized neutron target and ideally we needed a collection of polarized neutrons. However,

the half-life of a free neutron is very short1 which would unfortunately make our measure-

ment practically impossible. Hence, the polarized 3He target serves as a substitute for a

polarized neutron target. Deuteron can also be used as a neutron target. However, since

the deuteron contains one proton and one neutron, the neutron polarization is more diluted

by the proton as compared to the 3He nucleus. The 3He nucleus has two protons and one

neutron of which the two protons cancel their spins in the ground state most of the time

(∼ 90%) which corresponds to the S-state as shown in Fig. 4.1 and effectively the 3He

nucleus behaves as a single neutron. Thus, in the ground state, the S-state is the most

favorable state among the other two S′ and D-states2 as shown in the Fig. 4.1.

A polarized 3He target has been used at SLAC, in the HERMES experiment at DESY,

at MAMI, and at Jefferson Lab to study the spin structure functions of the neutron. Our

experiment E06010 also used a polarized 3He target successfully to study the SSA on the

neutron with the objective to explore the quarks’ transversity distribution by looking at the

Collins and Sivers contribution to the SSAs.
1The half-life of a free neutron is (878.5±0.7stat±0.3sys s)) [99]. This is the most recent result on neutron

lifetime measurement using gravitationally trapped ultracold neutrons (UCN). The number is quoted from
the Particle Data Book (PDB).

2In addition to the S-state which is the space-symmetric state, S′ and D-states exist due to the spin
dependence of the nucleon-nucleon potential and the tensor force in the nuclear Hamiltonian, respectively.
However, they have only a few percent probability as shown in the figure.
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Figure 4.1: Different ground state wave functions of 3He. The pink circle represents a
proton and the red circle represents a neutron.

4.2 Basic Principle

Consider a sample of N 3He nuclei in an external magnetic field. Now if N↑ is the number

of spins aligned parallel to the direction of the magnetic field and N↓ is the number of spins

aligned anti-parallel to the field, then the vector polarization is defined as

P =
N↑ −N↓

N
. (4.1)

There are two hyper-polarization methods that have been used to polarize 3He. One is

metastability-exchange optical pumping [100], [101] and the other one is spin-exchange

optical pumping [102]. The spin-exchange optical pumping scheme is used in Hall A to

polarize the 3He gas.

4.2.1 Optical Pumping

Spin-exchange optical pumping was used to polarize the atoms of 3He. The atoms are po-

larized in a two-step process. First, electrons in Rb atoms are polarized by optical pumping

and then these polarized electrons transfer the polarization to the 3He nuclei via spin-

exchange collisions. A pure3 3He gas cell contains only Rb atoms and a small amount of

N2
4 in addition to the 3He. Experiment E02013 was the first experiment in Hall A that

used a hybrid cell which contains potassium (K) in addition to Rb, N2 and 3He in order to
3The word pure is used to refer to the 3He cell which contains Rb and N2 with the 3He gas. However,

to enhance the process of optical pumping by making the spin exchange between the alkali atoms and the
inert gas nuclei more efficient, potassium (K) was added in additon to the 3He gas in the cell. Thus, the
3He cells containing K atoms are termed as hybrid cells.

4A small amount of N2 is added to the 3He cell in order to quench any unpolarized light during the
process of optical pumping.
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make the spin-exchange process faster and more efficient. E06010 used three hybrid cells

during the process of data taking. In case of a hybrid cell, Rb is optically pumped and

the polarization of the Rb atoms is transferred to the K atoms via spin-exchange collisions.

Then the polarized K atoms in turn transfer the polarization to the 3He nuclei. This spin-

exchange via K is much faster than the Rb-3He exchange. The details of this process will

be presented in the later sections.

We use 795 nm diode lasers to polarize the electrons in the Rb atoms. Rb has one electron

in its outermost 5S1/2 shell. The ground state Hamiltonian for Rb in an external magnetic

field ~B applied along the z-direction can be written as [103]:

H = Ag~I · ~S + gsµBSzBz −
µI
I
IzBz, (4.2)

where the term Ag~I · ~S describes the coupling between the electron spin ~S and the nuclear

spin ~I of the alkali atoms, Ag being the isotropic magnetic-dipole coupling coefficient. The

second term gsµBSzBz describes the magnetic-dipole coupling between the electron spin ~S

and the external magnetic field ~B where gs=2.00232 for the electron and the Bohr magneton

µB= 5.7884×10−11 MeV/T. The last term is the magnetic-dipole coupling between the

nuclear spin ~I and the static magnetic field ~B where µI is the nuclear magnetic moment

which is 4.26426×10−12 MeV/T for 85Rb. I = 5/2 for 85Rb and I = 3/2 for 87Rb. Now the

expectation value of the Hamiltonian in Eq.(4.2) is given by the eigenstate |F,mF 〉 where

F is the total angular momentum quantum number of the state defined as ~F = ~I + ~S.

In a magnetic field, F splits into 2F+1 sub-levels denoted by mF = mI + mS with mI =

−I,−I + 1, ...., I − 1, I, mS = −S,−S+ 1, ...., S− 1, S, and mF = −F,−F + 1, ...., F − 1, F .

Hence,

H|F,mF 〉 = E(F,mF )|F,mF 〉. (4.3)

For the ground state, the total angular momentum of the electron ~J = ~S as the orbital

angular momentum ~L is zero. Since S=1/2 in this case, mS = mJ = ±1/2.

Fig. 4.2 shows the process of optical pumping where the Rb atoms are exposed to circularly

polarized laser light of wavelength 795 nm which corresponds to the 5S1/2 → 5P1/2 transition

known as D1 transition. Depending on the helicity of the photon absorbed, the electrons

finally populate the mF = 3 or mF = −3 sub-level of the 5S1/2 state as shown in Fig. 4.2.
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Figure 4.2: The process of optical pumping (left) and the polarization transfer from Rb to
K and K to 3He via spin exchange (right) [10].

4.2.2 The Spin Exchange

As mentioned in the previous subsection, the polarization of the alkali atoms is transferred to

the 3He nuclei via the spin exchange process which is a collisional transfer process between

the two atoms. In a “hybrid” spin exchange process, a simple spin exchange collision

between a Rb atom and a K atom transfers the polarization of Rb atoms to K atoms and

then another subsequent spin exchange collision between the K atoms and the 3He nuclei

transfers the polarization to the 3He nuclei. A simple spin-exchange collision between the

two S1/2 Rb and K atoms can be expressed as follows [104]:

Rb(↑) +K(↓) −→ Rb(↓) +K(↑). (4.4)

This equation represents how the Rb spin which was up(↑) before collision is transferred to

the K spin which was down(↓) so that after the collisional exchange, the K spin is up(↑)

and the Rb spin is down(↓). The interaction potential, in this case, is of the form [104]:

V (r) = Vo(r) + SRb · SKV1(r), (4.5)

where SRb and SK are the spin operators of Rb and K atoms, respectively. Now this

potential is of order electron-volts because of the electrostatic nature of the spin-exchange

interaction forces. But the most important observation is even if the atoms exchange their

individual spins during collision, the total spin of the colliding pair is always conserved [104].

The next consecutive process of the spin exchange mechanism in the hybrid cell is the binary
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collisional transfer of polarization between the K atoms and the nuclei of the inert gas atoms

(3He). The spin dependent interaction between an alkali atom and an inert gas atom can

be written as [88]:

V (~R) = γ(R) ~N · ~S +A(R)~I · ~S, (4.6)

where R is the inter-atomic separation. The first term describes the interaction between

the electron spin ~S and the rotational angular momentum ~N of the K-3He system. The

second term stands for the hyperfine interaction between ~S and the inert gas nuclear spin

~I. It is worth mentioning here that in the collision process, van der Waals molecules are

produced which live until they are broken apart by a subsequent collision. This can be the

main relaxation mechanism. But since gas pressure used for optical pumping is very high,

most of the molecules break up before they depolarize the nucleus. Hence, this effect can

be neglected [103].

4.2.3 More On Hybrid Spin-Exchange and Polarization of 3He

Hybrid Spin-Exchange Optical Pumping5 (HSEOP) has the advantage over pure alkali Spin-

Exchange Optical Pumping (SEOP) that it transfers the polarization of the alkali atoms to
3He with much greater efficiency. The spin exchange collisions between K and 3He atoms

transfer the angular momentum to the 3He much more quickly and efficiently than the

collisions between Rb and 3He atoms. For any SEOP process, two types of efficiencies are

relevant.

• Photon efficiency (ηγ): It is defined as the number of 3He nuclei polarized by each

photon that is absorbed.

• Spin-exchange efficiency (ηSE): It is defined as the ratio at which the polarization

is transferred to the 3He nuclei to the rate at which it is depolarized through different

collisions by the alkali atoms present in the cell.

In case of HSEOP, measurements of both ηγ and ηSE revealed that there is an order-of-

magnitude SEOP improvement for K-Rb-3He as compared to Rb-3He. At typical densities

of 1014 cm−3, the K-Rb spin-exchange rate is 105/s which is much greater than the typical
5The Spin -Exchange Optical Pumping (SEOP) in case of a hybrid cell involving the K atoms are termed

as Hybrid Spin-Exchange Optical Pumping.
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500/s alkai spin-relaxation rates in 3He cells. The equation governing the rate of change of
3He polarization P3He can be written as [105]:

dP3He

dt
= γSE(PA − P3He)− γ3HeP3He, (4.7)

where γSE = kK [K] + kRb[Rb] is the spin-exchange rate, kK and kRb are the spin-exchange

rate coefficients, [K] and [Rb] are the densities of K and Rb, respectively. PA is the electron

spin polarization for K and Rb. In spin-temperature equilibrium, K and Rb have equal

electron spin polarization [104], [106]. The depolarization rate of 3He in other processes is

denoted by γ3He. For a normal non-hybrid cell, the spin relaxation rate of Rb is dominated

by three different collisional transfer processes: the transfer of spin angular momentum of

Rb to the rotational angular momentum of other Rb atoms, 3He atoms, and N2 atoms.

It is to be noted that a very small amount of nitrogen is always added to the 3He gas to

absorb any unpolarized photon that is emitted from the decay of the electrons in the Rb or

K atoms from the excited state during the pumping process. The total spin relaxation rate

of Rb can be expressed as

ΓRb = kRb−3He[
3He] + kRb−N2 [N2] + kRb−Rb[Rb], (4.8)

where the coefficient kRb−3He represents the spin relaxation rate constant for collisions

between the Rb atoms and the 3He nuclei and so on. [3He], [N2] and [Rb] denote the

densities of 3He, N2, and Rb respectively [107]. The relaxation due to the collision of Rb

atoms with the cell wall is negligible [108]. In case of the hybrid spin exchange process, the

spin relaxation of K atoms is also dominated by K-K, K-Rb, and K-3He collisions, diffusion

losses at the wall being small [105]. In the presence of rapid K-Rb spin exchange, the

effective spin relaxation rate of Rb increases from ΓRb to Γ′Rb given by

Γ′Rb = ΓRb + ΩΓK + qK−Rb[K], (4.9)

where Ω = [K]/[Rb], ΓK is the total relaxation rate of K and qK−Rb[K] is the K-Rb loss

rate. Usually under our conditions, this K-Rb loss rate is negligible.

The spin exchange efficiency that is responsible for the effectiveness of the evaluation of the

hybrid pumping is

ηSE =
γSE [3He]
[Rb]Γ′Rb

=
(kRb + ΩkK)[3He]

ΓRb + ΩΓK + qK−Rb[K]
. (4.10)
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Table 4.1: A few useful parameters associated with a typical hybrid cell and the spin ex-
change process. Most of these quantities are explained in [1]. T represents the temperature
in Kelvin. The densities of 3He, N2, and alkali atoms are typical values at our working
temperature of 230◦C.

Relevant quantities Experimental values/expressions
Density of 3He ([3He]) ∼1020 cm−3

Density of alkali ([Rb],[K]) ∼1014 cm−3

Density of N2 ([N2]) ∼1018 cm−3

Spin exchange rate coefficient, kK 5.5×10−20 cm−3/s
Spin exchange rate coefficient, kRb 6.8×10−20 cm−3/s
Spin relaxation rate constant, kRb−Rb 4.2×10−13 cm−3/s
Spin relaxation rate constant, kRb−3He 1.0×10−29T 4.259 cm−3/s
Spin relaxation rate constant, kRb−N2 1.3×10−25T 3 cm−3/s
Spin relaxation rate constant, kK−K 9.6×10−14 cm−3/s
Spin relaxation rate constant, kK−3He 5.5×10−20+5.8×10−31T 4.259 cm−3/s
Spin relaxation rate constant, kRb−N2 7.0×10−26T 3 cm−3/s
Spin relaxation rate constant, qK−Rb 2.2×10−13 cm−3/s

Studies have shown that even with Ω ∼1, considerable improvements could be achieved in

terms of hybrid exchange. In our experiment, all the three cells used had Ω ∼5. Table 4.1

summarizes the values of different quantities explained above that are typical to a hybrid

cell and the hybrid spin exchange process. A typical measure of the efficiency of the spin

exchange process is a spin-up time of the polarization of the 3He atoms. The spin up time is

defined as the amount of time the 3He atoms require to reach the equilibrium polarization.

A typical spin up time for a hybrid cell used in E06010 was ∼4 hours as shown in Fig. 4.3.

4.3 The Target System

The target system for the transversity experiment was by far the most complicated system

in the history of polarized 3He experiments in Hall A. The system was mainly composed

of three pairs of Helmholtz coils, two pairs of RF coils, the oven with three pairs of pick

up coils, the 3He cell, the target ladder with an empty target cell, reference target cell, and

an optics target (7 carbon foils and 1 BeO foil) as well as two pairs of target chamber pick

up coils. A heater system together with an air flow system acted as an integral part of the

target system to maintain the desired temperature of 230◦C inside the oven. Also there are

two additional pairs of magnet coils to correct for any magnetic field gradient in the target
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Figure 4.3: A typical spin up curve for one of the hybrid cells used in E06010. The fitting
funtion is A(1−Be−t/C) where the fitting parameter A represents the expected maximum
value of the NMR amplitude and C represents the spin up time. B is irrelevant to our
measurement. In the plot, A = 46.53± 0.08 mV and C = 4.42± 0.04 hours.

region. However, during the experiment those coils were not used as the field gradient was

already very small.

4.3.1 The 3He Cell

All the cells used in the experiment were hybrid cells. The cells were blown at Princeton by

Mike Souza and filled at the University of Virginia and the College of William and Mary.

Since E06010 required to have polarized 3He in both vertical and transverse directions6,

special consideration was taken to make the “seals”7 of these cells so that we could access

both the pumping directions on the cell without hitting the “seals” by the powerful lasers.

A name “90 degree pull off” was given to each of these cells in order to differentiate them

from the other cells used for pumping in the longitudinal (along the direction of the in-
6Vertical and transverse directions are defined with respect to the horizontal plane which contains the

incoming electron beam through the center of the hall, the center being the center of the target. This means
when the direction is referred to as vertical, it represents that the 3He spins are aligned vertically upwards or
downwards with respect to the horizontal plane along the incoming beam. On the other hand, the direction
horizontal refers to the 3He spins aligned perpendicular to the incoming beam but in the hall plane.

7The special procedure of sealing the glass cell and detaching it from the rest of the glass blowing
equipments results in a slightly deformed extension which looks like a little tail coming out of the spherical
cell. This portion of the cell is sometimes termed as the “pull off” of the cell. The “pull off” is about 3 to
4 cm long.
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Table 4.2: The respective numbers are from the University of Virginia and the College of
William and Mary database. Vp is the volume of the pumping chamber, Vt is the volume
of the target chamber, and Vtt is the volume of the transfer tube.

Name Filled at Vp Vt Vtt (cm3) Fill Density Lifetime (hours)
Astral UVA 164.92 79.47 6.77 8.08 40
Maureen W/M 180.75 89.05 4.15 7.23 26
Brady UVA 169.27 74.57 5.98 7.87 31

coming electron beam) direction. A schematic diagram of the cell dimensions as well as its

orientation with respect to the Hall A coordinate system is shown in Fig. 4.4. The main

characteristics of the cells used in this experiment are summarized in Table 4.2.

Figure 4.4: Orientation of the hybrid cell in the Hall A coordinate system. The pumping
chamber and a part of the transfer tube are inside the oven which is not shown here.

Each of these cells had a pumping chamber of 3 inches in diameter and a target chamber

of ∼2 cm in diameter. The pumping chamber and the target chamber are connected through

a 5 to 6 cm long transfer tube . Typically aluminosilicate glass (GE180) is used to make

these cells. All the quantities in Table 4.2 were measured at the University of Virginia and
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the College of William and Mary. In addition to those numbers, the material of the glass,

the thickness of the cell windows and the cell walls, the length of the transfer tube and the

ratio of the K to Rb atom densities are extremely important quantities for polarimetry as

well as the radiative correction analysis.

4.3.2 Target Ladder

A target ladder is mounted on the oven which has five different target positions. The

positions are shown in the Fig. 4.5 and described below:

• Polarized 3He target cell position

This position was for the polarized 3He cell which was used for the main production

data in the experiment. The cell was glued to the bottom plate of the oven with

RTV8. This could be replaced by a water cell at times. The water cell was used for

the calibration of the polarization measurement in the 3He cell discussed later in the

polarimetry section.

• A solid BeO target in line with seven Carbon foils

This position was for the alignment of the beam on the target by tuning the beam

positions and for optics calibration of the detectors. The beryllium oxide (BeO) foil

was used to make the beam spot easily visible so that a correct beam position on the

target could be achieved.

• A “hole” target

This was just the central carbon foil but extended in height with a hole in it. This

was also used for finer alignment.

• An empty target position

This position was mostly used for beam tuning and also during the Møller measure-

ment. It contained no target and thus this position allowed the incoming beam to

pass without any obstacles in its path.

• A reference cell position

This position was for different calibration processes such as the elastic calibration, the
8RTV is a special kind of glue that can be used at high temperatures.
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detector calibration, other background studies, etc. The reference cell was filled with

either nitrogen, hydrogen or helium-3 in accordance with the purpose of the studies.

Figure 4.5: Schematic diagram of the target ladder system.

The target ladder could be moved vertically to different positions using a stepper-motor-

driven motion control system. It had a limit switch at each position and the motion was

controlled remotely via EPICS from the counting house. The pick up coil position shown in

the schematic is the position between the two pairs of pick up coils. The target was lowered

to this position to do the NMR measurements.

4.3.3 Oven, Heater, and Airflow System

The oven used in the experiment was made of a material called CS85. It had an inlet and

an outlet for the circulation of compressed air. Since the pumping chamber was in the oven

and it had to be kept at 230◦C to evaporate potassium in the 3He cell, the air blown into
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the oven must be hot enough to maintain a stable temperature. In order to accomplish

this, pressurized, dry, and filtered air provided by a compressor in Hall A was allowed to

pass through two heaters. One heater was controlled by a variac in the hall and the other

one was controlled by a PID feedback electronic control chassis. The hot air in the oven

exited through an exhaust pipe. Both the inlet and the outlet piping were enclosed in

a tube that supported the oven and was wrapped with insulation material. A Resistive

Temperature Device (RTD) was attached inside the oven to read the inside temperature

and a thermocouple was inserted inside the insulation material near the second heater to

measure the temperature of the hot air going into the oven. Throughout the experiment,

our oven temperature was kept stable at 2300 with a PID system that was able to restrict

any temperature fluctuations within 2◦C.

4.3.4 Holding Field Set Up

Three pairs of Helmholtz coils were used in the experiment to produce the magnetic fields

in three mutually orthogonal directions. Two pairs of horizontal Helmholtz coils were used

to produce the desired magnetic field in the two horizontal directions, viz, the longitudinal

field along the beam direction and the transverse field perpendicular to the beam direction

but in the horizontal plane9. The third pair of Helmholtz coils was the largest one which

encompassed the other two and was used to produce the vertical field. A schematic dia-

gram of the Helmholtz coils system is shown in the Fig. 4.6. Table 4.3 shows the basic

characteristics of the three pairs of Helmholtz coils.

Table 4.3: Dimensions of the Helmholtz coils used in the experiment to produce the magnetic
field holding the spins of the 3He spins.

Coil Inner diameter (m) Number of turns Resistance (Ω)
Small 1.27 256 3
Large 1.45 272 3
Vertical 1.83 355 4.4

The horizontal pairs of coils were powered by two KEPCO BOP 36-12D power supplies
9Specifically as explained earlier, the Transverse refers to a direction which is either right or left to the

incoming electron beam at an angle 90◦ but lies in the horizontal plane. Longitudinal refers to the direction
in the horizontal plane along the incoming electron beam (i.e. the relative angle with respect to the beam
is either 0◦ or 180◦.
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Figure 4.6: Schematic diagram of the Helmholtz coil system used in E06010 in Hall A. The
RF coils and the pick up coils are also shown [9].

while an Agilent 6675A supply was used to power up the vertical pair. The current settings

for these three pairs of coils throughout the experiment are shown in Table 4.4.

Table 4.4: Current settings for the three pairs of Helmholtz coils. ~B stands for the holding
magnetic field direction, IS for the current in the small coils, IL for the current in the large
coils, and IV for the current in the vertical coils. The small and the large coils are the
two pairs used to produce the field in horizontal directions. The typical magnitude of the
magnetic field generated in any of these two directions is 25 Gauss.

~B IS (A) IL (A) IV (A)
Transverse 6.234 -4.621 0.712
Vertical 0.329 -0.358 14.093
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4.4 Laser and Polarizing Optics

4.4.1 Laser and Optical Fibers

In the past years, all the polarized 3He experiments in Hall A used Fiber Array Package

(FAP) systems to optically pump and polarize the 3He atoms. For the first time in Hall A,

the FAP systems were replaced by COMET lasers in this experiment. Three COMET lasers

were used during the experiment. The difference between the COMET (sometimes referred

to as Narrow Bandwidth) lasers and the FAP lasers is the narrow wavelength linewidth

(∼0.2 nm) of the COMET laser as compared to the 2 nm linewidth of a FAP system. As a

result, there is a dramatic increase in the absorption of the laser light by the Rb atoms in

the hybrid cells and a larger polarization of the 3He atoms could be achieved in a shorter

period of time. With these three COMET lasers, a maximum polarization of ∼72% could

be estimated during the production and because of this high maximum polarization, ∼62%

in beam polarization (with spin flips included) was achieved during the experiment. The

currents and the corresponding powers of the COMET lasers used in the experiment are

listed in the Table 4.5.

Table 4.5: The laser parameters used throughout the experiment. It is important to mention
here that the diode temperatures were adjusted a few times during the experiment. They
were more or less consistent with the numbers listed.

Lasers Current (A) Power (W) Diode Temperature (◦C
COMET1 35.0 25 26
COMET2 34.0 25 20
COMET3 35.9 25 25

The lasers were installed and interlocked in the laser building behind the counting house

on the accelerator site at Jefferson Lab. The fiber coming out of each COMET control unit

was connected to a 75 m long fiber that ran from the laser building to the hall. Then the

75 m long fiber was connected to a 5-to-1 combiner. A 5-to-1 combiner has five separate

fibers as inputs and one output. During the entire period of production data taking, we

used three lasers at a time for one particular pumping direction. Three 75 m fibers were

connected to one 5 to 1 combiner. A typical power loss in such a 75 m long fiber was ∼6%.
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4.4.2 Optics

The laser light coming out of the 5-to-1 combiner had to be aligned in order to focus the

light on the 3He cell in such as way that the diameter of the spot is approximately equal

to the diameter of the cell. In other words, in order to make the polarization process ef-

ficient, it was essential to converge the laser light into the cell uniformly and wasting as

little light as possible. This was achieved with our optics assembly where various optical

components were placed and aligned accordingly. The unpolarized laser light was allowed to

pass through the same optics components so that either a left or a right circularly polarized

light could be available at the output of the optics assembly. The circularly polarized light,

when focused to a spot of ∼3 inches in diameter on the cell, was absorbed by the Rb atoms

in the cell. A very good alignment of the optics was quite essential in order to achieve a

very high polarization of the 3He atoms.

Three optics lines were installed and aligned in the optics enclosure in the hall. The trans-

verse and the vertical lines were used for the transversity experiment E06010 and the longi-

tudinal line was used for other experiments. The setup of the optics components is shown

in the Fig. 4.7.

A brief description of the optics components

Unpolarized laser light with a wavelength of 795 nm from the three outputs of the com-

biner was incident on the first lens L1. The focal length of L1 was 75 mm. L1 focused the

three spots at its focal point. But after the focal point, the spots started to diverge again.

Another lens, L2, of focal length 750 mm was placed in such a way that the spots incident

on the lens within the diameter but still reasonably separated and could be clearly visible.

Then the beam splitter was used to separate S and P waves from the incident unpolarized

light coming out of L2. The S wave was allowed to pass through the quarter wave plate Q1

and reflect back from mirror M1 and pass through Q1 again. Thus, after getting reflected

from M1 and passing through Q1 twice, the S wave became a P wave and passed through

the beam splitter again. On the other hand, the P wave now was incident on the mirror

M2. Now both P waves passed through two quarter wave plates Q2 and Q3 so that the

linearly polarized P waves became circularly polarized. The quarter wave plates were cali-
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brated to proper angles so that the linearly polarized P waves, when passed through them,

would become circularly polarized in the same direction (either left circularly polarized or

right circularly polarized). The last two components in the path were the mirrors MB1 and

MB2. Each of them had a diameter of 6 inches. The two circularly polarized waves now

were incident on MB1 at an angle of 45◦. The reflected waves were also incident on MB2

at an angle of 45◦. The relative orientation of the big mirrors was important in order to

preserve the polarizations of both waves. The final spot size of the laser light on the cell

was mostly influenced by L1. A simulation was performed well ahead of the experiment to

determine the distances between different optics components and the focal lengths of the

lenses used.

Figure 4.7: Schematic diagram of the optics setup. This setup was for the vertical pumping.
For the transverse pumping, another mirror was attached to the oven not shown in the
figure. The reflected light from the big mirror MB2, in this case, was incident on that
mirror mounted on the oven. The rest of the setup was the same.
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4.5 Polarimetry

Two polarimetry techniques were employed during E06010 to measure the polarization of

the 3He atoms. Nuclear Magnetic Resonance (NMR) was used frequently to measure and

monitor the polarization of 3He. Since during the experiment the spins of the 3He nu-

clei were reversed every 20 minutes, an NMR measurement was performed during every

flip. Therefore, the polarization was determined and recorderd every 20 minutes. However,

NMR is a relative measurement and hence an absolute method, Electron Paramagnetic

Resonance (EPR), was used to calibrate the NMR measurements. In addition to the EPR

measurements, two water NMR measurements were performed as well to cross check our

polarimetry. The EPR measurements were performed on the pumping chamber and the wa-

ter NMR was performed on the target chamber. Both these methods measure the absolute
3He polarization and will be discussed in the following subsections.

4.5.1 Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance (NMR) is a phenomenon that is observed when a nucleus of an

atom with non zero spin is in a static magnetic field and is subjected to another oscillating

magnetic field. It utilizes the principle of Adiabatic Fast Passage(AFP) which is described

below.

Principle of NMR-AFP

Let us consider a free particle with spin ~I and magnetic moment ~M in a magnetic field

~H0. According to classical theory of electromagnetism, the torque ~τ experienced by the

particle is given by

~τ = ~M × ~H0. (4.11)

We know that torque is the rate of change of angular momentum. Hence, one can write,

~τ = ~
d~I

dt
. (4.12)

The magnetic moment ~M can be written in terms of spin as

~M = γ~~I, (4.13)
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where γ is the gyro-magnetic ratio. Combining Eqs.(4.11), (4.12), and (4.13), we get:

~M × ~H0 = ~
d~I

dt
(4.14)

=⇒ ~M × ~H0 =
1
γ

d ~M

dt
(4.15)

=⇒ d ~M

dt
= γ ~M × ~H0. (4.16)

Now this equation is in the inertial or laboratory frame of reference. To simplify, let us

consider a rotating frame of reference, S′, rotating with an angular velocity ~ω with respect

to the laboratory frame. Then the relation of the rate of change of the magnetic moment

between these two frames can be written as:

d ~M

dt
=
∂ ~M

∂t
+ ~ω × ~M, (4.17)

where the term d ~M
dt represents the rate of change of ~M in the laboratory frame and the

term ∂ ~M
∂t represents the rate of change in the rotating frame. Now combining Eq.(4.16) and

Eq.(4.17), we can write the motion of the magnetic moment in the rotating frame S′ as:

∂ ~M

∂t
= γ ~M × ~H0 − ~ω × ~M (4.18)

=⇒ ∂ ~M

∂t
= γ ~M × ( ~H0 +

~ω

γ
). (4.19)

Now if we compare Eq.(4.16) and Eq.(4.19), we see that in the rotating frame S′, the original

holding field ~H0 is replaced by an effective field ~He given by

~He = ~H0 +
~ω

γ
. (4.20)

Let us consider our system when we do an NMR measurement. There were two holding

field configurations, viz, the vertical and the transverse directions. Here, only the vertical

configuration is considered where the holding field ~H0 was along the x-axis10. Now if we

choose a rotating frame with an angular velocity ~ω = −γ ~H0, the effective field ~He vanishes

and hence magnetic moment becomes a constant of motion. This frequency is called the

Larmour frequency. In order to perform an AFP process during the measurement, an RF

field was applied in the longitudinal k̂ direction (which was along the beam direction). If
10If we define a coordinate system (x,y,z) with the corresponding unit vectors (i, j, k), the incoming electron

beam is along the z-axis while the x and y axes represent the vertical and transverse directions, respectively.
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we denote the RF field by ~Hrf = Hrf cos(ωt)k̂, the effective field in the rotating frame can

be written as,

~He = (H0 +
ω

γ
)̂i+Hrf k̂, (4.21)

where ω is the precession frequency of the rotating frame. Note that ω is not necessarily

equal to the Larmour frequency.

During the measurement, the RF was swept from 77 kHz to 85 kHz through the reso-

nance at ω0= 81 kHz and back. The sweep rate was 4 kHz/s to satisfy the AFP conditions.

The Adiabatic Fast Passage conditions have two requirements. The change in the frequency

and hence the passage of the spins through the resonance should be fast enough so that the

spins do not have time to relax during the sweep (fast condition) and slow enough compared

to ω0 so that the spins can follow the sweep (adiabatic condition). The AFP condition for

the frequency sweep NMR is derived in Ref. [10] and can be expressed as:

|γHrf |
T2

<< |ω̇| << γ2Hrf
2. (4.22)

where T2 is the transverse 3He spin relaxation time, γ=3.24 kHz/G is the gyromagnetic

ratio for 3He and Hrf is the amplitude of the RF field. For field sweep NMR where the

holding field is swept and the frequency is kept constant, the usual AFP condition requires

a sweep rate of 1.2 G/s. In this case, the holding field is swept from 25 G to 32 G and then

back with the resonance at 28 G which corresponds to a transition frequency of 91 kHz.

During the experiment, field sweep NMR was done a few times as part of our calibration

process. This allowed us to compare the pumping chamber polarization with the target

chamber polarization.

Electronics and measurement procedure

Most of our NMR measurements were frequency sweep NMR measurements in the pumping

chamber and were calibrated with EPR measurements. Since we flipped the spins of the

target every 20 minutes by performing frequency sweep NMR, we actually monitored the

polarization in the pumping chamber every 20 minutes throughout the experiment. The

advantage was that no extra NMR measurements were needed to be performed frequently

unlike the previous polarized 3He experiments.
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Figure 4.8: The electronic set up for the NMR measurements. The figure is reproduced
from [10].

The electronics set up for the NMR measurements is shown in the Fig. 4.8. The power

supplies for the holding field provided the necessary currents into the Helmholtz coils to

maintain a constant field. While keeping the holding field constant at 25 G, an RF func-

tion generator, HP 3324A, swept the frequency from 77 kHz to 85 kHz at the rate of 4

kHz/s. During the sweep, the spins follow the frequency and move from being aligned to

anti-aligned or vice versa with respect to the holding field. The spins, when passing through

resonance, change the flux through a pair of pick up coils which were mounted on the oven

(there were three pairs of pick up coils on the pumping chamber for three different configu-

rations and two pairs of pick up coils fixed along the target chamber). This change in flux

then induces an electromotive force and a signal is generated in the pick-up coils. Then the

signals from both pick up coils were sent into low-noise pre-amplifier inputs (input A and

input B) of an SR620 and the output (A−B) was then connected to the input of a lock-in

amplifier (Model SR844). It was essential at the beginning of the experiment to adjust all

the five pairs of pick-up coils in such a way that, when connected and the output (A−B)

subtracted, the real signal was added and the noise got subtracted. The Helmholtz coils,
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the RF coils, and the pick-up coils have to be orthogonal to each other in order to perform

the NMR measurement and obtain a signal from the pick-up coils. Once the signal from

the pick-up coils through the pre-amplifier was sent to the lock-in amplifier, and then the

signal was read by a computer via a GPIB interface.

A typical frequency sweep NMR signal is shown in the Fig. 4.9. The height of the signal

from the lock-in amplifier is proportional to the transverse component of the magnetization

of 3He and hence the polarization. The signal is fitted to the square root of a Lorentzian

function :

S ∝ ω1√
(ω − ω0)2 + ω1

2
, (4.23)

where ω0 is the Larmour frequency, ω is the frequency of the RF field and ω1 is related to

the width of the peak and the magnitude of the RF field.

Figure 4.9: NMR frequency sweep signal fitted to the square root of a Lorentzian function.

4.5.2 Electron Paramagnetic Resonance (EPR)

Theory

Electron Paramagnetic Resonance (EPR) measures the splitting of different energy lev-

els of an atom in the presence of an external magnetic field due to the Zeeman effect. Using
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EPR on the alkali atoms which are present in the 3He cell, the absolute polarization of 3He

can be extracted. The high pressure hybrid 3He cell contains some amount of Rb and K.

The ratio of Rb to K densities in the cells used in the experiment was 5:1. For an alkali

atom, the eigenstates of the total angular momentum can be written as (defined earlier)

~F = ~I + ~S, (4.24)

where ~I is the nuclear spin and ~S is the electron spin of the alkali atom. For 85Rb, I=5/2

and S=1/2 and for 39K, I=3/2 and S=1/2. In presence of the holding field ~B, F splits into

(2F+1) sub-states. For 85Rb, F=2,3 and for 39K, F=1,2. In case of 85Rb, the F=3 state

splits into 7 sub-states while for 39K, the F=2 state splits into 5 sub-states in the presence

of ~B. When we shine circularly polarized laser of 795 nm wavelength on the cell, the light

gets absorbed by the Rb atoms in all the sub-states of the lower S1/2 level and as a result,

the atoms get excited to the higher P1/2 level. For example, for right circularly polarized

laser light, the atoms in the sub-state mF=−3 of S1/2 absorb the incident light and get

excited to the sub-state mF=−2 of P1/2. This excitation process is restricted by the selec-

tion rule ∆mF=+1 for absorption. However, the selection rule for emission ∆mF=+1,−1,0

allows the atoms in the mF=−2 of P1/2 to decay into mF=−3,−2,−1 of S1/2 as shown in

Fig. 4.10. The probabilities of the decay process can be determined by the Clebsch-Gordon

coefficients. Consequently, the number of atoms now present in the mF=−3 sub-state of

S1/2 is less than the original number, before the absorption of light. Now this process takes

place through all the mF sub-states in the S1/2 state and eventually, all the atoms are po-

larized in the mF=+3 sub-state. Even though the atoms in the mF=+3 sub-state of P1/2

can decay into both mF=+2 and mF=+3 sub-states of S1/2, the atoms which decay into

mF=+2 sub-state immediately absorb the laser light and get excited back to the mF=+3

sub-state of the P1/2 state due to the continuous pumping of laser in the cell. The Zeeman

splitting between the mF=+3 and mF=+2 state of S1/2 describes the corresponding EPR

frequency for Rb. On the other hand, if the laser light is left circularly polarized, then

the EPR frequency would correspond to the Zeeman splitting between the mF=−3 and the

mF=−2 state of the S1/2 state. Similarly for K, the splitting between mF=+2 and mF=+1

(for right circularly polarized light) and the splitting between mF=−2 and mF=−1 (for left

circularly polarized light) describe the EPR frequency. This EPR frequency is not only af-

fected by the applied external field ~B, but also by the Rb-3He (K-3He in case of K) spin
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exchange interaction as well as the small magnetic field generated by the polarization of 3He.

Figure 4.10: The splitting of the S1/2 and P1/2 states of Rb into sub-states in the presence
of an external magnetic field. The absorption and the emission of the 795 nm laser light
are also shown for a few selected transitions.

If we look at the Hamiltonian of the alkali atoms (Rb or K) in a magnetic ~B, it consists

of three parts given by Eq. (4.25).

H = 2π~A~I · ~S + ~S · ~B + ~I · ~B, (4.25)

where the different terms are given as follows:

• 2π~A~I · ~S : Contribution due to the hyperfine interaction between the alkali nucleus

and the electron.

• ~S · ~B : Contribution due to the Zeeman splitting of the electron energy levels.

• ~I · ~B : Contribution due to the Zeeman splitting of the nuclear energy levels.

Here A is the alkali hyperfine splitting frequency, ~B is the total magnetic field, ~I is the

alkali nuclear spin and ~S is the alkali electronic spin. The eigenvalues of this Hamiltonian

are given by the Breit-Rabi formula [109]:

EF=I±1/2,M =
−A(I + 1/2)

2(2I + 1)
− gIµNBM±

A(I + 1/2)
2

(1 +
4M

2I + 1
x+ x2)1/2, (4.26)

where x = ω
2πA(I+(1/2)) and ω = 2µB

~ .

Now as the variation of the EPR frequency, νEPR, for the respective alkali atom with respect
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to ~B is small, the change ∆νEPR can be approximated by the equation:

∆νEPR =
dνEPR
dB

∆B, (4.27)

where dνEPR
dB can be calculated from Eq. (4.26). ∆νEPR is in fact a combination of three

terms which can be written as:

∆νEPR = ∆νSE + ∆νHe + ∆νB, (4.28)

where ∆νSE is the contribution from the alkali-3He spin exchange, ∆νHe is the contribu-

tion from the classical magnetic field created by the polarized 3He atoms and ∆νB is the

contribution from the magnetic holding field. Since we flip the 3He spins while doing the

measurement, the contribution from the holding field cancels. This is because of the fact

that when the 3He spins are parallel to the holding field ~B, a very small additional magnetic

field, ∆ ~B, arises from the 3He spins which are aligned along ~B. Thus the effective field in

this case is ~B+∆ ~B. When the 3He spins are flipped by 180◦, they are aligned anti-parallel

to the field ~B and in this case, the effective field becomes ~B −∆ ~B. Hence, there remains

no effect of the holding field once the difference between these two states is taken. One can

now write Eq. (4.27) in terms of the respective magnetic field components as follows:

∆νEPR =
dνEPR
dB

[∆BSE + ∆BHe]. (4.29)

The term ∆BSE corresponds to the small effective magnetic field that comes from the very

short but frequent spin exchange collisions between the alkali atoms and the 3He atoms and

it can be written as:

∆BSE = (2KHe~/THegeµB) < ~K >, (4.30)

where KHe is the frequency shift parameter, 1/THe is the alkali-3He spin exchange rate per

alkali atom, ge=2.000232, µB=5.7884×10−11MeV/T and < ~K > is the average 3He nuclear

spin.

The term ∆BHe corresponds to the classical magnetic field produced by the bulk mag-

netization of the polarized 3He gas. The size of the classical magnetic field is dependent on

the geometry of the target cell. It can be expressed as:

∆BHe =
CηHeµHe < ~K >

K
, (4.31)
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where C is the dimensionless factor that depends on the geometry of the cell, ηHe is the

density of 3He, µHe=6.706984× 10−14MeV/T, and <~K>
K =PHe is the polarization of 3He in

the cell. Combining Eqs. (4.29), (4.30), and (4.31), one can write:

∆νEPR =
8π
3
dνEPR
dB

κ0µHeηHePHe, (4.32)

where κo ≡ κ0(T ) = κ00(Tref )+κ0T (T−Tref ) is a dimensionless constant that parametrizes

the spin-exchange “effective” field. This is the biggest source of systematic error in the po-

larization measurement. There have been a few measurements dedicated to determine κ0

at different temperatures. These measurements are reported in Refs. [110], [111], [112].

Each of these measurements was primarily dominated by the systematic effects due to the

uncertainties in temperature, density of the alkali atoms and the polarization measurements

of 3He atoms. However, the highest temperature at which one of these measurements was

performed was ∼172◦C [112]. In order to determine the value of κ0 at our working tempera-

ture, we had to rely on a linear extrapolation of the measured values at a lower temperature

(Tref = 100◦C). Hence, the extrapolation to a temperature of ∼250◦C results in larger un-

certainties in the determination of κ0.

Electronics and measurement procedure

Basically the EPR system consists of the following components:

In the Hall:

• The EPR RF coil mounted on the oven.

• The EPR lens and fiber assembly mounted on the oven.

• The Photodiode and the Rb D2 filter assembly.

• The EPR RF amplifier.

In the Counting House:

• The EPR RF function generator HP/Agilent E4400B.

• The EPR frequency counter SR 620.

• The Lock-in amplifier EGG 745.

• The PI feedback box constructed by the University of Kentucky.

• The function generator DS345.
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The setup is shown in the Fig. 4.11.

Figure 4.11: Schematic diagram of the EPR setup in the experiment. The blue connections
correspond to the GPIB controls and the arrows represent the connections with the BNC
cables.

The EPR transition is excited by a frequency modulated RF signal which is sent from

the function generator into a small coil located inside the oven and near the top of the

pumping cell. The frequency of the signal corresponds to the energy difference between

the two sub-states mF=−2 and mF=−1 or mF=+2 and mF=+1 of the F=2 states of K

as mentioned earlier. For ∆mF=−2→−1, the resonance frequency is ∼19 MHz and for

∆mF=+2→+1, the frequency is 16 MHz in a holding field of 25 G. Note that this hap-

pens in ground state of the K-atom. Now as described earlier in the theory section, the

Rb atoms continuously absorb circularly polarized laser light and get excited from the S1/2

state to the P1/2 state. Finally all the polarized Rb atoms accumulate in the mF=−3 or

mF=+3 sub-state of the S1/2 state. When we perform EPR measurement on Rb, i.e., if

the RF signal matches the frequency difference between the two mF sub-states of Rb atom,

the polarized Rb atoms in mF=+3(−2) are de-excited to mF=+2(−3). Then these atoms

again absorb laser light and get excited to the P1/2 state. Performing EPR on K causes

some depolarization of the K atoms by the RF probe. However, the atoms re-polarized very

quickly by K-Rb spin exchange, thus depolarizing Rb.
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During the depolarization of Rb and then re-absorption of the laser light, there is an in-

crease in the photons emitted from the P1/2 to S1/2 (D1) transition (795 nm). But due

to the thermal mixing between the P1/2 and P3/2 energy states and sometimes collisional

mixing with the N2 atoms present in the cell, the atoms in the P1/2 state can mix with the

P3/2 state. Then those atoms decay from P3/2 state to S1/2 state which corresponds to the

D2 transition (780 nm). The amount of D1 and D2 fluorescence is essentially the same. But

the D1 light is suppressed by the large background of the laser light and hence we detect

the emitted D2 light with a photodiode. In order to filter the D2 light from the D1, two

D2 filters were attached to the face of the photodiode. Further, the light was focused by a

lens system mounted on the oven and guided by a 10 m long fiber. The other end of the

fiber was attached to the filter and photodiode assembly. Hence the signal detected in the

photodiode after mainly consisted of D2 light, but there are still some amount of D1 light

that got detected.

This D2 signal consists of a DC component and an AC component. The DC part is present

because of the fact that some amount of D2 light also reaches the photodiode which comes

from the parts of the cell that are minimally effected by the EPR RF excitation coil. The

EPR de-excitation is very small in this case and hence, the alkali polarization is not chang-

ing drastically. The AC component, on the other hand, is at the modulation frequency

of the RF coil and is detected in the lock-in amplifier. When this component is plotted

against the central frequency of the EPR excitation, the lineshape looks like the derivative

of a Lorentzian function as shown in Fig. 4.12.

To get a good or optimal EPR frequency lineshape signal, various parameters in the

lock-in amplifier, the modulator, and the function generator had to be adjusted. The most

commonly used parameters throughout the measurements are listed below.

The Lock-in Amplifier

• Time constant: 1 ms

• Sensitivity: 500 µV

• AC gain: Highest possible value without overloading the amplifier.

• Input limit and DR are associated with AC gain
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Figure 4.12: A typical EPR frequency lineshape spectrum recorded in the lock-in amplifier.
The blue lines show the region where the frequency needs to be locked with the feedback
mechanism discussed in the text. The region between point A and point B is fitted with a
first order polynomial in order to determine the slope. The range of the fit is ∼50 kHz.

RF Function Generator HP E4400B :

• Amplitude: −10 dB to 2 dB depending on the signal

• FM deviation: 50 kHz to 100 kHz depending on the strength of the signal and the range

of frequencies we would like to have when the 3He spins are flipped

Modulation source DS345 :

• Frequency: 200 kHz

• Amplitude: 1.5 VPP

• Function: sine wave

• Sweep/Modulation: LIN SWP

Once a good FM lineshape is obtained, the Proportional Integral (PT) feedback circuit

comes into play which is the most important part in the EPR measurement. The PI feed-

back parameters which lock the EPR transition are entirely dependent on the lineshape.
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The slope of the frequency sweep lineshape (shown in Fig. 4.12) is called the “feedback

slope” and determines the gain of the PI feedback box and is in the units of µV
kHz . This

relates the EPR resonance frequency to the drive voltage of the sensing electronics and

thus the analog signal from the lock-in amplifier is converted into a frequency correction

that is applied to the central frequency of the RF generator. The feedback process will be

described in the next subsection.

Figure 4.13: A typical EPR AFP spectrum. ~B + ∆ ~B ( ~B −∆ ~B) corresponds to the state
when the magnetic field generated by 3He is parallel (anti-parallel) to the holding field.

Once the EPR frequency signal is locked with the proper PI gains, the frequency reading

in a counter is recorded as a function of time. The 3He spins are then flipped twice with

respect to the main holding field using the NMR frequency sweep AFP technique. This is

called EPR AFP. The difference in the two frequencies corresponding to the two opposite
3He spin states is proportional to the “effective field” to first order. As explained earlier,

this “effective field” is partially generated by the polarization of the 3He atoms. One can

measure very precisely the absolute polarization of the 3He gas by just measuring the dif-

ference in the EPR frequencies. A typical EPR AFP spectrum is shown in the Fig. 4.13.

The difference between the frequencies in the two states ( ~B + ∆ ~B and ~B −∆ ~B), denoted

by ∆νEPR, is proportional to the 3He polarization. Note that when the field generated by

the 3He, i.e. ∆ ~B is parallel to the holding field ~B, the 3He spins are actually anti-parallel
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to ~B because the magnetic moment of 3He is negative and hence, its polarization has an

opposite sign.

The Proportional-Integral (PI) feedback circuit

The PI feedback circuit is in fact the heart of the EPR measurement. It is the gain of

this circuit that determines how well we can lock the EPR frequency and hence, the cal-

ibration of the PI box was an integral part of the process. A PI box constructed by the

University of Kentucky was used in this experiment. It was built by the electronics group

in the Department of Physics and Astronomy at the University of Kentucky. The circuit

diagram of the box is shown in Fig. 4.14.

Figure 4.14: EPR PI feedback circuit used in the experiment.

The master EPR feedback equation can be written as [113]:

∆VFM
∆νFM

× 10V
Lock − in Sensitivity

×GP × 2×GHP ×
νdev

1VPP
≤ 1 (4.33)

where the different parameters are defined as follows:

• ∆VFM
∆νFM

is the slope of the differentiated “FM sweep” lineshape explained earlier.

• GP is the absolute gain of the PI circuit.

• GHP is the gain of the RF function generator. Basically, it is a response of the generator
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in terms of the conversion between the frequency and the output voltage which can be

measured easily.

• νdev is the FM deviation of the function generator. Usually it is specified as per 1 V peak

to peak voltage, therefore 1 VPP is explicitly put in the equation.

Usually the total gain of such a circuit is between 0 and 1. The slope ∆vFM
∆νFM

depends

on GHP and νdev. Hence, when we actually measure the slope of the lineshape, these two

factors are actually accounted for already. Also in practice, we require the total gain of the

PI circuit to be −0.5. The negative sign is because of the nature of the feedback circuit.

Now the master equation can be written as:

mFM ×
10V

Lock − in Sensitivity
×GP = −0.5 (4.34)

where mFM is the slope of the fit to the region in the lineshape spectrum shown in Fig. 4.12.

The calibration of the PI box involved determining the absolute gain of the circuit

by putting a constant voltage from the function generator as an input and measuring the

corresponding output voltage. The box has two regulators in the front panel. One regulates

the absolute gain and the other controls the integration gain. We measured the gain of the

circuit for a constant input voltage as function of the regulator positions which actually

have numbers from 1 to 10. Then the data were fitted to a first order polynomial so that

we could write

GP = m · n+ C, (4.35)

where m is the slope of the fit, C is the offset parameter and n is the regulator position.

Using Eq.(4.34) in Eq.(4.35),

mFM ×
10V

Lock − in Sensitivity
× (m · n+ C) = −0.5 (4.36)

The FM lineshape slope determines mFM . Then Eq.(4.36) yields the feedback gain and

hence the corresponding regulator position for the absolute gain in the PI box can be deter-

mined. Thus, setting the proper absolute gain of the feedback circuit, the EPR frequency

can be locked. Our calibration of the PI box was good enough so that almost all the EPR

measurements performed during the experiment were quite stable with the absolute gain
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determined by Eq.(4.36). However, it was not possible to calibrate the PI box for the in-

tegration gain. But most of time, it turned out that the integration regulator positions 1

and 1.5 were reasonable positions to set the desired integration gain for the circuit.

4.6 Polarimetry Analysis and Results

During the experiment, approximately ten EPR measurements were performed for each of

the 3He cells (Astral, Maureen, and Brady). We calibrated each EPR AFP flip with the

corresponding NMR sweep during the measurement and used that calibration constant for

our regular polarization measurement via frequency sweep NMR every 20 minutes. The

calibration constant is the ratio of the polarization number from the EPR frequency shift

to the corresponding NMR signal height and is usually expressed in %/mV . The calibration

procedure will be discussed later.

4.6.1 EPR Analysis

The extraction of the absolute polarization of the 3He atoms from an EPR measurement

can be performed in two ways. The direct method evaluates directly the absolute holding

field at each frequency state and uses the magnetization of the 3He spins to extract the po-

larization. The derivative method, on the other hand, uses the frequency difference between

the two states (original and flipped) of the 3He spins and the derivative of the frequency

with respect to the holding field to calculate the polarization. Both methods were used for

the analysis to cross check the polarization number and they were quite consistent. The

methods are discussed in more detail below.

The direct method extraction

The Breit-Rabi formula yields the energies of different states in an alkali atom. The situa-

tion becomes simpler when we deal with the transitions involving the edge states11. Since

we performed EPR on potassium only, the transitions between the edge states correspond

to either mF=1→2 or mF=−1→−2. These are termed end transitions. In this case, the
11The two mF sub-states having the highest or lowest energies of any S or P state in an atom are called

the edge states.
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frequency of an end transition has the following simpler form [113]:

ν± = (
gSµB
−2

− 1
2
gIµN )

B

h
±
νhfs

2
[1−

√
1± 2(

2I − 1
[I]

)x+ x2], (4.37)

where the parameters are as follows12:

• frequency ν± where ± refers to the edge state mF=±(I + 1
2) in the end transition

• electron g-factor gS = −2.002319304372

• g-factor gI = +0.26097

• Bohr magneton µB = 9.27400095×10−24JT−1

• magnetic moment µN = +0.39146

• ground state hyperfine splitting frequency νhfs = 461.719 MHz

• holding field: B

• x=(gIµN − gSµB) B
hνhfs

Because of the slightly simpler form of Eq.(4.37) and due to the fact that it has only one

square root term, one can invert the equation to get the field as a function of frequency.

The field corresponding to a particular frequency is therefore:

B(ν) = (−b− s
√
b2 − 4c)/2, (4.38)

where s is called the “shift” parameter which determines the sign of B(ν). It has a value

equal to +1 if the EPR AFP spectrum has a “HAT” shape and −1 if the spectrum has

a “WELL” structure. The details of about the “shift” parameter s can be found in [113].

The spectrum shown in Fig. 4.13 is an EPR AFP spectrum which has a “HAT” shape. b

and c are called Breit-Rabi b-coefficient and c-coefficient, respectively, and they are defined

as follows:

b = −

[
gSµB(hνhfs2I+1 − shν)− gIµN (2Ihνhfs

2I+1 − shν)
]

sgSgIµBµN
, (4.39)

c = [shν(hνhfs − shν)]/gSgIµBµI . (4.40)

In the analysis, we fit a straight line to each of the spin states and extrapolate the fit to a

frequency where the transition or the flip occurs. Usually the spectrum looks very stable

and one could fit a constant assuming that the deviation of the frequency from the mean

value is small as a function of time. If we denote the transition point frequencies in each 3He
12In νhfs,hfs corresponds to the Hyperfine Splitting.
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spin state as ν1 and ν2 for the first AFP in the spectrum, we can calculate the corresponding

magnetic fields B1 and B2 from Eq. (4.38). Now the difference ∆B=B1-B2 can be related

to the magnetization of 3He as:

MHe =
∆B

(2/3)µ0κ0
, (4.41)

where µ0 = 4π× 10−7 N/A2 is the permeability of free space and κ0=4.269+0.00864×T as

explained earlier. Finally taking into consideration the absolute density of the 3He atoms in

the cell, the absolute polarization can be extracted by simply using the following equation :

P =
MHe

ρµHe
, (4.42)

where P is the polarization, ρ is the density, and µHe= 1.07×10−26 J/T.

The derivative method extraction

This method utilizes the low field frequency derivative with respect to field expansion,

i.e. dν
dB to extract the polarization P according to the equation:

P =
∆ν

dν
dB

8π
3 κoµHeρ

, (4.43)

where ∆ν = ν1 − ν2 and the rest of the parameters were explained before. The derivative

of the frequency with respect to the field is:

dν

dB
= ∓gIµN

h
+
gIµN − gSµB

2h[I]

 2mF + [I]x√
1 + 4mF

[I] x+ x2
− 2mF − 2 + [I]x√

1 + 4(mF−1)
[I] x+ x2

 (4.44)

The derivative can be expanded in terms of x (defined earlier) at low field and to fifth order

in the field, it can be expressed as :

dν±
dB

=
(gIµN − gSµB)

h[I]

5∑
n=0

bn
xn

[I]n
, (4.45)

where [I]=2I+1 and b are the coefficients of expansion which are functions of [I] and mF .

The detailed calculation can be found in [114]. Here the first six coefficients are listed for

the end transitions that we used in our analysis.

b0 = 1±O(10−3), (4.46)

b1 = ∓4I, (4.47)
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b2 = 6I(2I − 1), (4.48)

b3 = ∓8I(4I2 − 6I + 1), (4.49)

b4 = 10I(2I − 1)(4I2 − 10I + 1), (4.50)

b5 = ∓12I(16I4 − 80I3 + 80I2 − 20I + 1), (4.51)

where ± refers to the edge state mF=±(I+1/2) involved in the transition.

As mentioned earlier, approximately 10 EPR measurements were performed for each of

the three cells during the entire period of production data taking. Each of them was an-

alyzed using both procedures mentioned above and they were very consistent with each

other. Fig. 4.15 shows the polarization results for all the measurements with transverse

and vertical directions of optical pumping. The measurements with larger statistical error

bars involved larger statistical fluctuations in the alkali Zeeman splitting frequency which

correspond to a weaker PI lock of the frequency. Most of the measurements were within a

statistical uncertainty of 2%.

Calibration of the NMR signal with EPR

Each frequency sweep NMR signal in the pumping chamber was calibrated with EPR.

Since the spins of the 3He nuclei were flipped every 20 minutes, a corresponding NMR sig-

nal was obtained every 20 minutes and, using the EPR calibration, a polarization number

could be obtained every 20 minutes. Fig. 4.16 shows the relation between an NMR and an

EPR AFP spectrum used to determine the calibration constants.

As can be seen from Fig. 4.16, when the spins of the 3He atoms are flipped, say, from

state A to state B, an NMR signal of amplitude S1 is obtained. From the frequency shift

∆ν1 between the states A and B, an absolute 3He polarization number P1 is determined

by using Eq.(4.43) after fitting the data points in each state with a first order polynomial.

Then a calibration constant is evaluated by taking the ratio of the polarization number to

the NMR signal height as follows:

C1 =
P1

S1
(4.52)
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Figure 4.15: The polarization results from the all the EPR measurements for all the cells
in the transverse (top) and the vertical (bottom) target polarization configuration. The
polarization numbers are determined using the direct extraction method.

Similarly, when the 3He spins are flipped back from state B to state A, another calibration

constant is evaluated :

C2 =
P2

S2
(4.53)

Thus, the final calibration constant is the average of C1 and C2. In general, if there are n

number of flips involved in the EPR measurement, the calibration constant can be written

as :

C =
1
n

n∑
i=1

Ci (4.54)
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Figure 4.16: The EPR AFP spectrum and the corresponding NMR signals for each 3He
spin flip during AFP.

In practice, we used two sets of calibration constants corresponding to sweep up and

sweep down signals. For instance in Fig. 4.16, the transition of state A to state B occurs

through the NMR process when the 3He spins are flipped by sweeping the RF frequency

from 77 kHz to 85 kHz (sweep up). This results in the calibration constant C1. Then, the

calibration constant C2 corresponds to the NMR process when the 3He spins are flipped

back by sweeping the RF frequency from 85 kHz to 77 kHz (sweep down) and hence to

the transition of state B to state A. In practice, C1 and C2 are slightly different. The

calibration constants are shown in Fig. 4.17. All the internal temperature corrections,

density corrections etc. are included in the analysis.

4.6.2 Water NMR Calibration

An NMR signal from a water sample can be used to calibrate the 3He signal in the target

chamber. A target cell was filled with water (natural water) to perform the NMR calibration.

The 3He cell was replaced by the water cell in the oven and during the experiment only one

water NMR calibration was performed trying to keep the same environment as in case of

the 3He measurements. The reason water NMR is usually used as a calibration is that the

thermal polarization of the protons in water can be calculated precisely in a given magnetic

field at a given temperature. The thermal polarization of protons can be expressed as:

P = tanh(
µpB

kBT
), (4.55)

where T is the temperature of the water sample in Kelvin (K), µp=8.79×10−14 MeV/T is

the magnetic moment of protons in water and B is the magnitude of the applied magnetic
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Figure 4.17: The calibration constants from the EPR measurements for the transverse and
vertical target polarizations. The red points correspond to the constants determined from
the sweep up signals and the blue points correspond to the constants from the sweep down
signals.

holding field. The AFP condition for the water sample is different from the usual polarized
3He sample. The applied RF field (H1) and the gyromagnetic ratio (γ) of the sample are

related by the following equation :

H1 =
2πf
γ
, (4.56)

where f is the applied frequency and γ for the proton is 26.75 kHz/G which gives a reso-

nance field of 21.3G at a frequency of 91 kHz. Hence in practice, unlike the range in 3He

NMR, the holding field was swept from 18 G to 25 G for the water calibration. The NMR

signal from the water sample is usually of the order of a few tens of micro volt which is very
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tiny as compared to the usual 3He signal. A typical signal of the water NMR calibration

during the experiment is shown in Fig. 4.18. It was extremely important to realize a rea-

sonable signal-to-noise ratio. This was done by adjusting the pick-up coils in such a way

that any residual RF field could be removed by cancelling the components through both the

coils. In addition, since the polarization of the protons remains constant for every sweep,

one can take advantage of doing the measurements thousands of times and averaging all of

them. During our measurement, we performed 2000 sweeps which resulted in a reasonable

signal-to-noise ratio and a statistical uncertainty of less than 1% was achieved.

Figure 4.18: A typical water NMR signal (2000 sweeps).

Basic Formalism : The Bloch Equations

One of the interesting properties of water signal is that the relaxation times of water,

T1 and T2, are comparable to the sweep time of the NMR measurement. T1 and T2 are the

longitudinal relaxation time and the transverse relaxation time, respectively. The relaxation

during the sweep influences the shape and the height of the water NMR signal which de-
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pends on the direction of the magnetic field sweep in addition to the sweep speed. The Bloch

equations describe the time evolution of the thermal polarization of water ~P (Px, Py, Pz) in

a rotating frame (x̂, ŷ, ẑ), when a constant holding field H along the ẑ axis and an RF field

H1 along the x̂ axis are applied [107]:

dPx(t)
dt

= γ[H(t)−H◦]Py(t)−
1
T2
Px(t) +

1
T2
χH1, (4.57)

dPy(t)
dt

= −γ[H(t)−H◦]Px(t)− 1
T2
Py(t) + χH1Pz(t), (4.58)

dPz(t)
dt

= −γH1Py(t)−
1
T1
Pz(t) +

1
T1
χH(t), (4.59)

where the definitions of the various terms are listed below:

• H0 = 21.3 G is the resonance field for an RF of 91 kHz

• H1 is the RF field at frequency 91 kHz (The amplitude of the RF field was ∼90 mG.)

• H(t) = H0+αt where α = 1.2 G/s is the ramping speed of the holding field.

• γ = 26.75 kHz/G is the gyromagnetic ratio of the proton.

• χ = µp
kBT

is the magnetic susceptibility of the proton.

• T1 is the longitudinal relaxation time in seconds.

• T2 is the transverse relaxation time in seconds.

This set of differential equations does not have any analytical solutions, but they can be

solved numerically with the initial conditions requiring that each of the first derivatives

in the time evolution to be at zero when the sweep starts (steady-state conditions). The

set of the above equations can be reduced to a single equation if one assumes that both

the relaxation times are equal, i.e., if T1 = T2. This leads to the fact that an effective

polarization Peff can be defined along the effective field ~Heff in the rotating frame as

follows:

Peff = k
√
Px

2 + Py
2 + Pz

2, (4.60)

where k = ±1. The time evolution of Peff can be expressed as :

dPeff (t)
dt

=
1
T1

[Peff − Peq(t)], (4.61)
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where Peq(t) is defined as :

Peq(t) = χ
H2

1 + αt(H◦ + αt)√
H2

1 + α2t2
(4.62)

The solution of the differential equation is given by :

Peff (t) = exp−(t−ti)/T1

[
Peq(ti) +

1
T1

∫
ti

t

exp(u−ti)/T1 Peq(u)du
]

(4.63)

which has no analytical representation. However, by expanding the exponential term and

the square root term within the integral and keeping the terms only up to third order, one

can reduce the expression for Peff to an analytical form which can be used to fit the water

NMR signal. After fitting the signal, a calibration constant Cw can be obtained and the

polarization of the 3He atoms is then related to the calibration constant as follows:

P3He = Cw · S3He, (4.64)

where S3He is the signal height of the 3He NMR.

4.7 Magnetic Field Direction Measurement

Experiment E06010 requires to have 3He spins polarized in two orthogonal directions, viz,

the vertical and the transverse directions. It was extremely important to know the direction

of the applied magnetic field in the target region in order to make sure that the field in

any of the two directions is not affected by the unwanted field components in any arbitrary

directions during the process of data taking and hence, it was necessary to know the field

direction to a level of at least 0.5◦. Two different types of compasses were used to determine

the holding field direction. The transverse field was defined as the applied magnetic field

that was in the horizontal plane but perpendicular to the incoming electron beam (the

electron beam lies in the horizontal plane passing through the center of the target and

the center of the target coincided with the center of the hall plane) while the vertical field

was the magnetic field perpendicular with repect to the horizontal plane. The transverse

field direction was measured by a dipole magnet which was a 40 cm long iron bar covering

the target length and was named longitudinal compass. The vertical field direction was

measured by a vertical compass which was a floating device in air with a magnetic cylinder

and an optical encoder attached to it. This device was developed in the Department of

Physics and Astronomy at the University of Kentucky and was used for the first time in
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this experiment. Schematic diagrams of both compasses are shown in Fig. 4.19 and Fig. 4.20.

Figure 4.19: The 40 cm longitudinal compass. During the measurements, point A and B
were surveyed by the survey group.

Figure 4.20: The side view of the vertical compass assembly. This figure is obtained from
Ref. [17].

The measurement procedure with the longitudinal compass was very straight forward

and done by the survey group at Jefferson Lab. The device was place exactly at the height

of the polarized 3He target and was surveyed for different values of the two Helmholtz coil

currents which produced the transverse magnetic field. Measurements were performed both

with the BigBite spectrometer field turned on and off. Once the surveyed angles were ana-

lyzed with the corresponding currents in the coils, the correct values of the currents in the

two Helmholtz coils to achieve the proper direction of the transverse field can be solved for.

Here the details of the analysis of the longitudinal compass will not be presented. Instead,
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the analysis and the measurement procedure of the vertical compass is presented in the

following subsection.

The Vertical Compass

The vertical compass is an air floating device. There are holes in the bottom stand as

well as the bottom of each of the pieces that hold the magnetic cylinder. We used nitrogen

instead of air in order to improve stability. Nitrogen was blown into the system through

the inlet as shown in Fig. 4.20 and eventually the magnetic cylinder was made to float since

there were holes evenly distributed on the bottom plate as well as the bottom of each of the

side pieces. We found two optimum settings for the nitrogen flow based on a trial and error

method. The first one was for the optimum floatation of the bottom disk and the second

one was the floatation of the magnetic cylinder. An optical encoder was attached to the

magnetic cylinder and it was read by a computer once connected through a USB system.

The procedure of the measurement was as follows :

• The whole system was placed on a platform at the center of the target. The platform

was designed in such a way that the compass, when placed on it, was at the height

of the target and the center of the magnetic cylinder coincided with the center of the

target in the hall coordinate system.

• We took out the top piece of the system having the encoder, leaving the bottom stand

on the platform. Then the bottom stand was leveled up to a precision of 1
100000

th of

an inch. Once leveled, the top part was placed on the stand.

• Nitrogen was allowed to flow into the system very slowly. In order to find an optimum

floatation point for the disk, the disk was rotated slowly at each nitrogen flow setting

until a frictionless oscillation of the disk was observed. Thus, after a few iterations,

the bottom disk was clamped down once the optimum floatation point was reached

for the disk of the system. This was the first optimum nitrogen flow setting.

• Once the bottom disk was clamped down, the nitrogen flow was adjusted further to

have the magnetic cylinder floating this time. This was again a similar trial and error

process which involved the rotation of the cylinder slowly by hand and looking into
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the value of the encoder reading if it came back to the original value once released.

This was the second optimum setting for the flow.

• Once we had our compass floating, the vertical magnetic field was turned on and the

value of the encoder reading was noted (N1).

• With the same nitrogen flow on, the clamps were removed and the disk was rotated

180◦ and was clamped again. The reading of the encoder was noted (N2).

• The angle of the field direction corresponding to the applied current to the vertical

Helmholtz coil was then given by :

θ = 90− (N1 −N2)× 0.09
2
, (4.65)

where 0.09 was the resolution of the encoder disk and θ is in degrees.

• We repeated the measurements for three different sets of current values ( 0 A, 8A,

and 16 A) in the vertical Helmholtz coil.

• Once the measurements were done at the center, the whole procedure was repeated

placing the compass ±20 cm from the center to measure the field directions at the

upstream and downstream ends of the target.

Analysis Formalism and Results

There were three pairs of Helmholtz coils in the target system. The horizontal pairs were

used to produce the field in transverse and longitudinal directions and the vertical pair was

used to produce the field in vertical direction. Let us define a few quantities in order to

define the angle of the resultant magnetic field in the vertical direction as shown in the

Fig. 4.21.

• Bl is the resultant field produced by the large horizontal Helmholtz coils together

with the magnetic field produced by the BigBite magnet. If Il is the current in the

large coils, IB is the current in the BigBite magnet and El is the Earth’s magnetic
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Figure 4.21: Definition of the vertical angle θ with respect to the incoming beam.

field component or any other ambient fields along the respective direction, Bl can be

written as

Bl = al · Il + El + alB · IB, (4.66)

where al and alB are the respective coefficients relating the currents and the generated

magnetic fields. This is one of the in-plane resultant magnetic fields.

• Bs is the resultant field produced by the small horizontal Helmholtz coils together

with the magnetic field produced by the BigBite magnet. If Is is the current in the

small coils, Bs can be written as

Bs = as · Is + Es + asB · IB, (4.67)

where as and asB are the respective coefficients relating the currents and the generated

magnetic fields with Es and IB defined above. This is the second in-plane resultant

magnetic field.

• Bv is the resultant field produced by the vertical Helmholtz coils together with the

magnetic field produced by the BigBite magnet. If Iv is the current in the vertical

coils, Bv can be written as

Bv = av · Iv + Ev + avB · IB, (4.68)

where av and avB are defined as above. This is the vertical out-of-plane resultant

magnetic field.
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• If θ is the angle between the resultant magnetic field produced by all the three pairs of

Helmholtz coils and the horizontal plane as shown in Fig. 4.21, then θ can be expressed

as:

tanθ =
Bv√

B2
s +B2

l

=
av · Iv + Ev + avB · IB√

(as · Is + Es + asB · IB)2 + (al · Il + El + alB · IB)2

=
K(Iv +A+B · IB)√

(Is + C +D · IB)2 +R2(Il + E + F · IB)2
, (4.69)

where K = av
as

, A = Ev
av

, B = avB
av

, C = Es
as

, D = asB
as

, E = El
al

, F = alB
al

and R = al
as

.

The goal of the analysis was to evaluate the parameters K, A, B, R, C, D, E, and F by

fitting the different data points for each target position13 with Eq.(4.69). However, the

parameters R, C, D, E and F could already be obtained from the longitudinal compass

data with a similar fitting procedure and used as inputs to the analysis of vertical

compass data. Once all these parameters were obtained, the exact combination of

current values in the three pairs of coils could be calculated in order to achieve a

vertical field.

Fig. 4.22 shows a sample plot of the vertical angles as a function of vertical coil currents

when the compass was placed at the center of the target. Two sets of data points were

taken with the BigBite magnetic field turned on and off as shown in the figure.

Table 4.6 summarizes the measurements of the field at the center of the target. The

Table 4.6: Data were taken with three sets of current settings in the vertical coil. θBB=0 rep-
resents the measured angle when the BigBite magnetic field was off while θBB=1 represents
the angle when the BigBite magnetic field was on.

Iv (A) θBB=0(◦) θBB=1(◦)
0 0.45 1.98
8 21.33 23.62
16 37.53 40.14

effect of the BigBite magnetic field at the center of the target is clearly visible from the table.
13Three positions along the target cell were considered for the measurements. Two of them were near the

target end caps on both sides (upstream and downstream) and one was at the center which was the most
crucial one.
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Figure 4.22: The direction of the vertical field as a function of vertical coil current with the
BigBite magnetic field turned on and off.

For all our measurements when the BigBite magnetic field was on, the current setting in the

magnet was 710 A which was the same current we applied during our whole production data

taking period. The quality of the fit of Eq.(4.69) to the data points is shown in Fig. 4.23

with a chi-squared of ∼1.1.

The final equation for the desired vertical angle as a function of all the currents in all

the three pairs of coils at the center of the target can be written as :

tan(θcenter) = 0.549299 · Iv + 0.712√
(Is + 0.424)2 + 0.9614(Il − 0.409)2

, (4.70)

where the numbers are the values of the fitted parameters (as in Eq.(4.69)). Table 4.7 lists

all the values.

Similar equations were obtained for the upstream and downstream positions as well:

tanθup = 0.539 · Iv + 0.806√
(Is + 0.392)2 + 0.9644(Il − 0.367)2

, (4.71)

tanθdown = 0.545 · Iv + 0.781√
(Is + 0.477)2 + 0.9606(Il − 0.448)2

. (4.72)
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Figure 4.23: The deviation of the measured vertical angle and the angle determined from
the fit.

Table 4.7: The fitting parameters from the Eq.(4.69) for the center position.

K 0.549±0.005
(A+B) 0.712±0.10
R2 0.9614±0.13
(E+F) -0.409±0.21
(C+D) 0.424±0.20

Finally, by solving these equations, the currents in all the three coils are determined to

achieve a vertical angle of 90◦ out of plane with respect to the electron beam. The currents

in all the three coils determined for the experiment are listed in the Table 4.8 and the

precision of the angle measurements was better than 0.3◦. However, since the currents in

the large and small coils were slightly different for different positions, only the values at the

target center were considered as the final setting of currents for the production data taking.

Table 4.8: The final values of the currents in all the three Helmholtz coils for a vertical
magnetic field in E06010.

Position Iv (A) Il (A) Is (A)
Center 16 0.409 -0.424
Upstream 16 0.368 -0.392
Downstream 16 0.448 -0.477
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4.8 Target Spin Flip System

One of the most important aspects of experiment E06010 was the target spin flip system

which ensured the flipping of the 3He spins very reliably every 20 minutes during the exper-

iment to reduce systematic uncertainties. The system not only successfully flipped the spins

of 3He and read the current spin state back, but also sent information about the flipping

to the main DAQ system. Here only a summary of the spin flip system structure and its

operation is presented. The details of the system can be found on the wikipedia page of

experiment E06010 [115].

Basic structure of the system

• User Interface: The user interface was a Lab view based environment which allowed

the user to control the whole system by taking the various inputs and displaying and

confirming the resulting status. It was the control panel of the system.

• Core: This part of the system was the heart of the whole spin flip system. It generated

and induced the spin flip in the target system in the Hall. Once the spins were flipped,

this part of the system was used to collect the information back and send the response

to the user interface as well as to the main DAQ system. It also acted as a feedback

control system in case of any malfunctioning and allowed the user to respond quickly

without loosing any vital information.

• Flip Confirmation: Basically it was a part of the core structure which collected the

NMR signal during the spin flip and sent it back to the lock-in amplifier through the

pick-up coils. Then it processed the signal and sent the information about the current

spin state to the system manager which again was monitored by the user interface.

• System Failure Monitor: This allowed the constant monitoring of the different es-

sential components of the system while in operation. The most important components

were the rotatable quarter wave plates of the polarization optics in the hall. When the
3He spins were flipped by 180◦, the polarization of the incoming lasers to the cell also

needed to be reversed. In order to do that, all the quarter wave plates that ensured

the circular polarization of the lasers had to be rotated by 90◦ during the flip so that

once the spins got flipped, the lasers would pump the reversed spins in the correct

143



direction. All the quarter wave plates were well calibrated before the experiment and

were assigned specific numbers corresponding to specific angles related to a particular

circular polarization of the lasers. All the quarter wave plates were monitored with

each spin flip during the experiment.

Another important aspect of the spin flip system was the logic electronics for the target spin

signal formation. The target logic electronics was an independent system which extracted

the information of the spin flip and the spin state from the NMR measurement irrespective

of the status of the target computer system. The idea was to keep track of the spin state

for each event in the data taking process. The spin state was inserted into the main DAQ

system independent of the target control system in the computer itself. It was read by ADCs

and treated as a target spin flag for each event. It also formed the gates for the scalers. The

signal distribution scheme is shown in Fig. 4.24 and the structure of the system is shown in

Fig. 4.25.

Figure 4.24: Schematic diagram of the spin flip distribution scheme.
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Figure 4.25: Schematic diagram of the spin flip system structure.
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CHAPTER 5: DATA ANALYSIS

In this chapter, analysis details of the production data are presented. The calibrations of

different detectors in both the Left High Resolution Spectrometer (LHRS) and the BigBite

spectrometer are discussed.

5.1 Left High Resolution Spectrometer (LHRS) Calibrations

The LHRS consists of different detector packages as discussed in chapter 3. The detector

packages include two vertical drift chambers (VDCs), an Aerogel Gas C̆erenkov detector

(A1), a Gas C̆erenkov detector (GC), a Ring Imaging C̆erenkov detector (RICH), two

scintillator planes (S1 and S2m) and two layers of lead-glass counters (PR1 and PR2,

PR standing for Pion Rejector). The detector packages are designed to perform various

functions in the characterization of the charged particles passing through the spectrometer

such as tracking of the particles, time-of-flight and coincidence time determination, trigger

formation to activate the data acquisition, etc. Therefore, in order to understand the

performance of the detectors and to facilitate the analysis of the final physics asymmetries,

it is very important to perform a very careful calibration of the detectors. In the following

subsections, the calibration procedures are summarized.

5.1.1 Vertical Drift Chambers (VDC)

The working principle of a VDC is explained in chapter 3. The typical drift time spectrum

of a wire plane is shown in the Fig. 5.1 where the drift times of all the wires in a plane are

plotted in terms of Time-to-Digital Converter1 (TDC) channels.

The TDCs were operated in common-stop mode and hence the large TDC values corre-

spond to the short drift times. The various regions in the spectrum can be understood as

follows:

• Region A : This is a region that corresponds to the particles having larger trajectory

angles and hence are further away from the drift cell around the sense wires.

• Region B : This region has all the field lines parallel and hence the drift velocity of

the electrons is constant.
1A Time-to-Digital Converter (TDC) is a device that converts a signal of pulses into a digital represen-

tation of the time of arrival of that signal.
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Figure 5.1: A drift-time spectrum of a VDC plane.

• Region C : In this region, the field lines begin to change from parallel to quasi-radial

closer to the sense wires and as a result, the probability of detecting a particle begins

to increase.

• Region D : This region corresponds to a region very close to the sense wires where

the drift velocity of the electrons increases drastically and probability of detecting a

particle is maximal.

In order to compare and use the drift time spectra from all the wires in a plane, a reference

timing t0 for all the wires had to be defined so that the various timing offsets due to variable

cable lengths and signal processing times for different wires could be eliminated. The

calibration procedure, thus, involved the determination of t0 for each wire in the plane and

matching each of them to one common reference point. t0 for each wire was determined by

differentiating the region of short drift times around channel 1800 numerically and looking

for the maximum slope. Once the maximum slope was calculated, it was extrapolated to the

channel axis and the point of intersection of the extrapolation and the axis was determined

as shown in Fig. 5.1. Each of the four planes in the two VDCs was calibrated and the

reference t0 was determined. This corresponds to 0 ns in the corrected timing spectrum

shown in Fig. 5.2.
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Figure 5.2: The corrected timing spectra of the four VDC planes after calibration.

5.1.2 Gas C̆erenkov (GC)

The GC in the LHRS consists of 10 mirrors, each coupled to a photomultiplier tube2 (PMT).

The signal was extracted from an Analog-to-Digital Converter3 (ADC) and the TDC con-

nected to each PMT. The electrons fire the GC while the pions and the kaons do not have

enough momenta4 to produce C̆erenkov radiation and hence they can not trigger the ADCs.

However, the pions and the kaons can produce secondary electrons by interacting with other

atoms in the gas which in turn can emit C̆erenkov light. But this kind of radiation has ar-

bitrary directions as the secondary electrons do not move in any preferred direction and

hence the light is collected very inefficiently by the mirrors. This kind of secondary radiation
2A photomultiplier tube (PMT) is a detector which is very sensitive to light in the ultraviolet, visible and

near-infrared ranges of the electromagnetic spectrum. It immensely multiplies the current produced by the
incident light and hence it is very useful when the incident flux of light is very low. The working principle
is based on the photoelectric effect.

3An Analog-to-Digital Converter (ADC) is a device which converts a continuous analog signal to a discrete
digital signal.

4As discussed in chapter 3 in the Gas C̆erenkov section, the particles inside the gas should have a minimum
momentum to produce C̆erenkov radiation.
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triggers the ADCs and produces signals which can be misinterpreted as primary electrons

produced in the reaction. However, the signals generated by these secondary electrons are

very small and correspond to low ADC channels. Such a signal is not part of the main signal

generated in the ADCs and is called Single Photo Electron (SPE) peak. The calibration of

the GC involved aligning the single photo-electron peaks in all of the ADCs to a certain

value so that the secondary electrons generated from the hadrons can be separated from

the primary electrons. Thus, calibration of the Gas C̆erenkov allows clear identificaton of

hadrons which helps in rejecting the primary electrons in the LHRS.

For our experiment, we chose the channel 200 of each ADC for the SPE peak. The SPE

peak in each ADC spectrum was fitted with a Gaussian profile and the mean value of the

distribution was determined. Then a correction coefficient was calculated which is defined

by C=200/N, where N is the mean value of the distribution. Thus, 10 different coefficients

were determined from the fits and finally implemented in the database. The calibration of

the GC was quite straightforward and each of the ADCs was aligned to the channel 200

for the SPE peak by just multiplying the existing SPE peak channel with the correction

coefficient. It was very important to distinguish the SPE peak from the main electron peak

in the ADC sum spectrum so that only the primary electrons could be chosen or rejected

in our case and not the electrons induced by any other particles like pions and kaons. A

typical ADC sum cut of less than 250 channels was applied to our data in the final analysis

to get rid of the background particles. Figure 5.3 on the next page shows the calibrated sum

of the GC ADCs and Fig. 5.4 shows the aligned SPE for all the PMTs after calibration.
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Figure 5.3: The Gas C̆erenkov ADC sum spectrum after calibration.

5.1.3 Aerogel C̆erenkov (A1)

The calibration procedure for the A1 was exactly the same as for the GC. In the case of A1,

both electrons and pions can trigger the ADCs , but not kaons or protons. Hence, the single

photo-electron (SPE) peaks produced in this case were mostly from kaons and protons (for

positive LHRS polarity). There were 24 PMTs and all the SPEs were aligned to the ADC

channel of 100. Figure 5.5 shows the A1 ADC sum spectrum after the calibration.

5.1.4 Lead-Glass Counter (Pion Rejector)

There were two layers of lead-glass counters as described in chapter 3 which were used as

particle identification detectors. The energy deposition by the hadrons corresponded to the

lower value of the ADC channel while that of the electrons corresponded to the higher ADC

value. During the calibration, all the pion peaks in the ADCs for both layers were aligned

to channel 100. The clear separation of pions and electrons in the energy over momentum

plot (E/p spectrum) is shown in the Fig. 5.6. After calibration, a cut less than 0.6 in E/p

was used in the final analysis to choose the pions.

5.1.5 Scintillator (S2m)

There were two scintillator planes,viz, S1 and S2m in the LHRS. Both were used to form

the triggers however, only S2m was used as a reference for determining the timing of the

events. Therefore calibrations were done only for S2m. There were 16 scintillator paddles
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Figure 5.4: All 10 ADC spectra for the Gas C̆erenkov after calibration.

in S2m having a PMT on each side. The calibration procedure involved determining the

different timing offsets of the scintillator paddles and aligning them to a particular TDC

channel. The timing of an event in any scintillator paddle can be expressed by the following

two sets of equations corresponding to the two PMTs:
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Figure 5.5: The A1 C̆erenkov detector ADC sum spectrum after calibration.

Figure 5.6: The Lead-glass counter E/p spectrum after calibration.

TL = T0 +
l

2cn
− y

cn
+ TLtw, (5.1)

TR = T0 +
l

2cn
+

y

cn
+ TRtw, (5.2)

where L and R correspond to the left and right PMTs. cn is the speed of light in the

scintillator material and TLtw/Rtw is the timewalk effect correction term for the left (right)

PMT. Figure 5.7 shows the basic diagram of particles (in our case we chose electrons)

passing through two adjacent scintillator paddles.

There were two steps to calibrate the paddles. First, the left and right PMTs were

aligned independently. In one case, the difference between the corrected times of the left

PMTs for adjacent paddles were plotted and TDC offsets were determined. In the second

case, the same procedure was applied for corrected times of the right PMTs for adjacent

paddles. Scintillator paddle # 7 which was in the middle of the detector plane, was used

152



Figure 5.7: The incoming particle hitting the two adj-ascent paddles in the S2m.

as a reference for these alignments. Once determined, the offsets were put into the LHRS

databases for S2m and checked after replaying the data. This was an iterative process and

two, three iterations were implemented for finer adjustments.

The next step involved plotting the difference between the left and right time average

of adjacent paddles along with the left and right time difference. This shifted the time

differences of the paddles to an arbitrary value. They did not have to have a value close

to zero as long as they all were aligned within a few tens of picoseconds. More discussions

on the timing offset calibrations and the timewalk effect corrections are presented in the

coincidence time calibration section.

5.2 BigBite Spectrometer

The BigBite spectrometer consists of three wire chambers for the track and momentum

reconstruction of the particles, a preshower detector and a shower detector for particle

identification and formation of the trigger, and a scintillator plane between the preshower

and shower detectors. A Gas C̆erenkov detector was inserted in front of the preshower

detector, but due to some technical issues it was not used for more than 95% of the running

period and hence will not be discussed here. The BigBite detector package was not a stan-
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dard detector package in Hall A as a result of which the calibration procedure involved in

this case was more rigorous and extensive as compared to the LHRS. Moreover, the envi-

ronment in the spectrometer was much noisier than the standard clean LHRS environment.

The calibration of the wire chambers and the preshower and shower detectors are presented

here. Details of these calibration procedures and results can be found in [18], [15].

5.2.1 BigBite Multi Wire Drift Chamber (MWDC)

The BigBite spectrometer had three wire chambers each having six wire planes as described

in chapter 3. Overall more than 3200 wires in the chambers were used for track reconstruc-

tion in the transversity experiment. The calibration procedure for the MWDCs involved

four parts which are summarized as follows:

• Detector Channel Map Check: Since the wire chambers had a huge number of

wires as mentioned above and each of them was connected to a TDC channel which

gave the timing information of the wire hit, a correct correspondence of the wires

and the TDC channels was crucial for the DAQ system. A detector channel map was

formed to serve this purpose. During the reconstruction of tracks, the TDC channels

were projected to the corresponding wires in the wire planes. Thus, the first part of

the calibration involved examining the detector map with the experimental data where

various problems related to different incorrect channel mapping could be identified.

With a perfect detector map, the distribution of the wire hit in a plane should be very

smooth as shown in the Fig. 5.8.

• t0 calibration: The basic purpose of the t0 calibration was the same as discussed

in the case of the LHRS. In the case of the BigBite spectrometer, the MWDCs were

associated with a DAQ which recorded the time difference between the signal from

a particular wire reaching the TDC (tsignal) and the signal of the trigger from the

calorimeter arriving at the TDC (ttrigger). Taking into account the trigger time-walk

correction which was of the order of a few nanoseconds, the drift time of the electrons

in the chamber (tdrift) and the time of hit of the particles in the chamber (thit) can

be expressed in relation to tsignal as follows [18]:

tsignal − ttrigger − ttimewalk ≡ tdrift − thit + t0, (5.3)
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Figure 5.8: A typical distribution of the wire hits in the U1 plane in the first chamber in
E06010. The separation of different read-out amplifier cards are represented by the red
lines [18].

where t0 is the time offset related to the difference in time between the signal in the

wire (which is hit) takes to reach the TDC and the time that the trigger signal takes

to reach the respective TDC. The quantity (tdrift− thit) represents the real drift time

of the particle detected. t0 was determined the same way as in the LHRS, i.e., by

identifying the rising edge or the maximum slope of the drift time spectrum near the

edge as shown in Fig. 5.9.

Figure 5.9: The drift time spectrum in the X -plane of the second chamber. The left plot
shows the spectrum for all the events and the right plot shows the drift time for the particles
for which a valid track was reconstructed. t0 is also shown [18].

• Drift Distance to Drift Time Conversion: The drift distance is defined as the

distance of the reconstructed track from the wire hit position. The function that con-

verts the drift distance to drift time was parametrized by several polynomial functions
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through the entire drift time window.

• Wire Position Calibration: In order to reconstruct a track precisely, the positions

of the wires needed to be known to great accuracy and this was achieved by combining

the knowledge from the survey report with the calibration of the track residual [18].

The calibration of the MWDC was an iterative process and few iterations had to be per-

formed in each step to achieve a good resolution and hence a precise track and momentum

reconstruction. The final spatial resolution achieved after very cautious calibration was

better than 200 µm.

5.2.2 Preshower/Shower Detector

The preshower and shower detectors in the BigBite spectrometer were made of lead-glass

blocks as described in chapter 3. The preshower detector had 54 blocks while the shower de-

tector consisted of 189 blocks. These were used to perform the particle identification as well

as to form the trigger in the spectrometer. The working principle of these preshower and

shower blocks is based on the total energy deposition of the particle passing through them

which is approximately proportional to the sum of the cluster amplitudes found in the indi-

vidual blocks. Hence, in order to perform the energy loss determination and track matching

precisely, both the preshower and the shower had to be calibrated to a known energy of

the incident particle. One of the best options in our experiment was acquiring calibration

data using the elastic reaction H(e,e′)X. Two different incident beam energies, viz, E0 =

1.231 GeV and E0 = 2.306 GeV were used in combination with an H2 target. The entire

calibration procedure involved two processes that used the shower cluster reconstruction.

The details can be found in [15]. Here a summary of the procedure is presented:

• Preliminary calibration with cosmic rays: The preshower and shower detectors

were gain matched using cosmic rays for a rough alignment of the ADC amplitudes

by adjusting the high voltages on the PMTs at the beginning of the experiment. Two

scintillators were mounted on the top and at the bottom of the detectors and a trigger

was set up for the cosmic rays passing vertically through the constituent blocks. There

were two PMTs attached to each of the scintillators and hence a logical AND of the

four PMTs formed the trigger. The cosmic rays, which were primarily muons, passing

vertically through the blocks generated energy loss peaks in the ADCs which were then
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aligned by adjusting the high voltages through a number of iterations. The ADCs in

the preshower were aligned to channel 240 and those of the shower were aligned to

channel 120.

• Elastic calibration: The calibration of the preshower and shower detectors using

elastic data involved determining the coefficients Cj in Eq.(5.4) for every block (e.g.

the jth block) which actually transforms the pedestal subtracted ADC amplitudes to

the energy deposition Ej by the following equation :

Ej = Cj(Aj − Pj), (5.4)

where Aj and Pj are the raw ADC amplitude and the pedestal of the jth block. Now

the coefficient Cj was determined by the linear minimization of the quantity χ2 for n

elastic events which is defined as :

χ2 =
n∑
k=1

Ek − M∑
j=0

CjAj − Pjk
2

, (5.5)

where Ek is the energy of the kthscattered electron from the tracking and M represents

the total number of blocks. Requiring ∂χ2

∂Cj
= 0, a set of linear equations were obtained

in matrix form [15]. Solving these equations, the coefficient Cj for the jth block was

calculated. Elastic data with beam energies E0= 1.231 GeV and E0 = 2.306 GeV

were used for this calibration. The scattered electrons had a momentum range of

0.8 GeV to 2.0 GeV of which the elastic events were selected by placing a cut on the

momentum vs. scattered angle plot choosing the elastic section. One set of calibration

constants was sufficient for the experiment as there was only one momentum setting

for the BigBite spectrometer. An energy resolution of ∼ 8% was achieved after the

calibration as shown in the Fig. 5.10.

5.2.3 Scintillator Plane

The BigBite spectrometer contained a scintillator plane consisting of 13 scintillator paddles

which was used for the timing information of the events. However, it was not used to form

any triggers. The calibration of the scintillators was done exactly the same way as that

of S2m in the LHRS using the two-adjacent bar hit method. The other corrections such

as time-walk effect and more on the time offset will be discussed in the coincidence timing

calibration section.
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Figure 5.10: E
p for the electrons in the preshower and shower detectors for two different

incident beam energies. E is the total energy deposited by the electron having momentum
p.

5.3 Detector Efficiency Study

The detector efficiency study includes the particle identification efficiencies of different de-

tector packages with respect to the various cuts applied in the analysis. This was done

extensively for each of the particle identification detectors. The efficiency study was very

important in order to select the hadrons in the LHRS and the electrons in the BigBite

as effectively as possible since the experiment was statistically limited. Hence proper and

efficient cuts on different detectors were essential. The particle identification efficiencies for

the detectors are presented in the following.

5.3.1 Gas C̆erenkov (GC) Efficiency in the LHRS

The GC detector in the LHRS was used to reject electrons which were the largest background

in the detection of hadrons (pions and kaons). A GC cut efficiency study was performed in

order to find an efficient rejection of the electrons and at the same time to have a reasonable

detection effeciency for pions and kaons. The rejection efficiencies of the electrons and the

detection efficiencies of the hadrons were evaluated with different cuts on the GC detector

ADC sum spectra. Once the calibrations of the GC detector and the lead-glass counters

were done, the lead-glass counters were used to determine the efficiency of the GC. Two

kinds of efficiencies can be defined as follows :

• Electron rejection efficiency: To determine the electron rejection efficiency, a very

tight two dimensional graphical cut was applied to choose the electrons in the lead
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glass counters. Figure 5.11 shows the energy in lead glass layer 1 vs. energy in layer 2

and the graphical cut sections. Let Ne denote the number of electrons chosen in the

graphical cut A. Then this cut was used in the GC detector ADC sum spectrum to

find the number of electrons triggered by the cut. Let this number be represented by

Ngce. Then the electron rejection efficiency can be defined as :

εR = 1− Ngce

Ne
(5.6)

Figure 5.11: The lead glass layer 1 and layer 2 energies. The graphical cuts used in the
analysis are also shown.

• Pion detection efficiency: To determine the pion rejection efficiency, a very tight

two dimensional graphical cut was applied to choose the pions in the lead glass coun-

ters as shown in Fig. 5.11. Let Npion denote the number of pions chosen in the

graphical cut B. Then this cut was used in the GC detector ADC sum spectrum to

see the number of pions triggered by the cut. Let this number be represented by Ngcpi.

The pion detection efficiency can be defined as :

εD =
Ngcpi

Npion
(5.7)

The typical response of the Gas C̆erenkov detector to the cuts applied in the lead

glass counters is shown in Fig. 5.12.

εR and εD were determined for different cuts in the GC detector ADC sum spectrum as

shown in Fig. 5.13. Here a cut >150 on the Aerogel C̆erenkov detector ADC sum was
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Figure 5.12: The Gas C̆erenkov detector response to the lead glass counter cuts. The left
figure shows the comparison of a typical GC spectrum and a GC spectrum triggered by the
electrons chosen in the lead glass counters. The right figure shows a comparison of a typical
GC spectrum and a GC spectrum triggered by the pions chosen in the lead glass counters.

applied. Fig. 5.14 shows the same analysis except no Aerogel cut was applied. The pion

detection efficiency increased as the Aerogel cut was removed while the electron rejection

remained almost the same. In our final analysis of the physics asymmetries, a GC detector

cut <250 was applied on the ADC sum, the single photo-electron peak being at channel

200. The efficiencies are summarized in the Table 5.1:

Table 5.1: Gas C̆erenkov detector efficiencies with the standard cut on the ADC sum (<250).

A1 cut εR(%) εD(%)
No A1 cut 98.7 96.8
A1>150 98.8 90.3

5.3.2 Lead Glass Counter Efficiency

The lead glass counters, commonly known as the pion-rejector, were used as an additional

particle identification detector to choose the pions and reject the electrons in the LHRS.

Similar to the GC detector efficiency analysis, the pion rejector efficiency was determined

by treating the GC as a reference. The two types of efficiencies are defined as follows :
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Figure 5.13: The Gas C̆erenkov detector efficiencies with the standard Aerogel ADC sum
cut > 150.

Figure 5.14: The Gas C̆erenkov detector efficiencies without any Aerogel detector ADC sum
cut.

• Electron rejection efficiency : The electron rejection efficiency, analogous to Eq.(5.6),

is defined as :

εR = 1− Npre

Ne
, (5.8)

where Ne is the number of electrons chosen after putting a tight cut on the GC

detector ADC sum spectrum (>1100) and Npre is the number of electrons triggered
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by the same cut in the pion rejector E
p spectrum.

• Pion detection efficiency : The pion detection efficiency, analogous to Eq.(5.7) is

defined as :

εD =
Nprpi

Npion
, (5.9)

where Npion is the number of pions chosen after putting a tight cut on the GC detector

ADC sum spectrum (<200) and Nprpi is the number of pions triggered by the same

cut in the pion rejector E
p spectrum.

Both εR and εD were determined for various cuts in the pion rejector E
p spectrum as shown

in Fig. 5.15. A cut <0.60 was chosen as a standard cut for our final analysis to select the

pions in the pion rejector. The efficiencies corresponding to that cut are summarized in the

following Table 5.2:

Table 5.2: Lead glass detector efficiencies with the standard cut on E
p <0.6.

A1 cut εR(%) εD(%)
No A1 cut 95.2 98.6
A1>150 96 98.6

The typical response of the lead glass counters to cuts on the Gas C̆erenkov is shown in

Fig. 5.16 and Fig. 5.17.

5.3.3 Aerogel (A1) Efficiency

The Aerogel C̆erenkov detector was used to separate pions from kaons. In addition to A1,

the coincidence-time-of flight and the RICH detector were used for particle identification of

pions and kaons. The coincidence-time-of-flight spectrum was taken as a reference to study

the efficiency of A1 detector. In this study, a cut of ±0.5 ns was applied to the pion peak as

shown in the Fig. 5.18 and the the number of pions triggered by that cut in the A1 detector

ADC sum spectrum was calculated for various cuts. The pion detection efficiency is then

defined as :

εD =
NA1

Npion
(5.10)
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Figure 5.15: The lead glass counter efficiencies with a standard Aerogel detector ADC sum
cut >150.

Figure 5.16: E
p spectra of the lead-glass counter with different GC detector cuts.

where Npion is the number of pions selected in the coincidence spectrum (variable CT.pi.t)

and NA1 is the number of pions triggered by the respective cut in A1. The pion detection

efficiencies of A1 detector are shown in Fig. 5.19 as a function of the cuts on the ADC sum

for both polarities of the LHRS. A cut of an ADC sum >150 for A1 detector was chosen

as the standard cut for the final analysis to choose the pions. The pion detection efficiency

εD was ∼98%.
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Figure 5.17: The energy of lead glass layer 1 vs. the energy of layer 2 with different GC
detector cuts.

Figure 5.18: The (e′, π) coincidence time spectrum. The pink lines show the cut region to
select coincidence pions. This plot corresponds to the coincidence spectrum for the hadrons
when the LHRS polarity was positive and hence, there is a proton peak on the left, ∼7 ns
away from the pion peak.

Along with this detector efficiency study, a contamination study was also performed in

both the LHRS and the BigBite spectrometer which is discussed in the following section.
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Figure 5.19: The A1 detector pion detection efficiencies as a function of ADC sum cuts.

5.4 LHRS Contamination Study

Different types of contamination studies were performed as part of the data analysis. During

the experiment, the data taking process was divided equally using the two polarities of

the LHRS : negative and positive. In the negative polarity mode, the electrons were the

largest background to the hadrons (pions and kaons) and in the positive polarity mode,

the protons were the largest background. In addition, the hadron identification process

treated the kaons as contamination to the pions and vice versa. In this section, a different

contamination analysis will be discussed. The analysis presented here involves only the

standard detector cuts described in the earlier sections which were applied in all the physics

analyses.

5.4.1 Electron Contamination to Pions

In order to determine the electron contamination to pions, the Gas C̆erenkov detector and

the lead glass counters were used in the analysis and the contamination in both detectors

were combined to get the resultant contamination in the LHRS with negative polarity. In

the analysis, both T3 (LHRS singles) and T5 (coincidence) events were treated separately.

Electron contamination in the Gas C̆erenkov detector

In order to determine the contamination of electrons to the pions in the Gas C̆erenkov

detector (GC) using the standard cut (ADC sum <250), an electron sample in the lead
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glass counter was chosen with an E
p cut >0.6 and a standard Aerogel detector ADC sum

cut >150. The GC sum is plotted in a histogram, say hGC(4000, 0, 4000), with the cuts

mentioned above where the first number in the parentheses is the bin number and the second

and the third represent the minimum and maximum of the range. Then a number NGC can

be defined such that :

NGC =
∫

0

250

(hGC)dx, (5.11)

where the bins (x) 0 to 250 are integrated in the histogram5. Another histogram with the

reconstructed vertex is generated, say h2(1, -0.2, 0.2) with the same set of cuts applied to

histogram hGC and the total number of events (N) in the histogram is obtained.

Then, the electron contamination to the pion sample in the Gas C̆erenkov detector with

the ADC sum cut < 250 is defined as :

[αe−→π− ]T3 =
NGC

N
, (5.12)

[αe−→π− ]T5 =
NGC

N
, (5.13)

where T3 and T5 correspond to the respective triggers for which the events were chosen. It

was found in our experiment with all the standard cuts, [αe−→π− ]T3 = 0.013 and [αe−→π− ]T5

= 0.028.

Electron contamination in the Lead glass counters

In order to determine the contamination of electrons to the pions in the lead glass counters

using the standard cut (Ep < 0.6), an electron sample in the Gas C̆erenkov detector was

chosen with an ADC sum cut >250 and a standard Aerogel ADC sum cut >150. The lead

glass E
p is plotted in a histogram, say hLG(120, 0, 1.2), with the cuts mentioned above

where the first number in the parentheses is the bin number and the second and the third

represent the minimum and maximum of the range as explained in the case of the GC. Then

a number NLG can be defined such that :

NLG =
∫

0

60

(hLG)dx (5.14)

5The integration is done over the bins in the histogram. The histogram is binned in such a way that each
bin contains one ADC channel.
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Similar to the case of GC, a normalization number N is obtained from a histogram

with the reconstructed vertex using the same cuts applied to hLG. Then, the electron

contamination to the pion sample in the lead glass counters with E
p cut < 0.6 is defined as :

[βe−→π− ]T3 =
NLG

N
, (5.15)

[βe−→π− ]T5 =
NLG

N
(5.16)

In E06010, the values of [βe−→π− ]T3 and [βe−→π− ]T5 were found out to be 0.03 and 0.06,

respectively.

Hence, using both detectors together, the final contamination of the electrons to the

pions in the LHRS can be expressed as :

[γe−→π− ]T3 = [αe−→π− ]T3 × [βe−→π− ]T3 = 0.0004, (5.17)

[γe−→π− ]T5 = [αe−→π− ]T5 × [βe−→π− ]T5 = 0.0016 (5.18)

5.4.2 Pion Contamination to Electrons

Similar to the electron contamination study to pions, the Gas C̆erenkov detector and lead

glass counters were used to determine the pion contamination to the electrons in the LHRS.

The same procedure was employed in this case except different cuts were applied to the

detectors to choose pions instead of electrons in the reference detector. The final contami-

nation of the pions to electrons in LHRS can be expressed as :

[γπ−→e− ]T3 = [απ−→e− ]T3 × [βπ−→e− ]T3 = 0.0002, (5.19)

[γπ−→e− ]T5 = [απ−→e− ]T5 × [βπ−→e− ]T5 = 0.0002, (5.20)

where α (β) is the pion contamination to the electrons in the Gas C̆erenkov (Lead-glass)

detector6.

5.5 BigBite Optics

The BigBite optics module can be used to reconstruct the particle (electrons, negative pi-

ons, etc.) kinematics information when it leaves the target. Two beam energy settings

(E0=1.230 GeV and E0=2.396 GeV) were used to perform the calibrations. The optics
6[απ−→e− ]T3 = 0.013, [απ−→e− ]T5 = 0.009, [βπ−→e− ]T3 = 0.020 and [βπ−→e− ]T5 = 0.023
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data quality were further checked with beam energy of 5.892 GeV. The vertex reconstruc-

tion was done with multi-foil carbon targets. The exact positions of the foils were known

from a survey report which were used as a reference. On the other hand, the momentum

reconstruction was done using the elastic H(e, e′)X scattering while a sieve slit plate was

put in front of the magnet for the angular reconstruction.

The first order BigBite optics model treated the BigBite spectrometer as a perfect dipole

magnet. The first order momentum is defined as [18] :

p = L

[
2 · sinφ · tan(

θ

2
)
]−1

, (5.21)

where L is the distance travelled by the scattered particle inside the magnetic field ~B, θ is

the bending angle for the particle in a plane perpendicular to ~B, and φ is the angle between

~B and the momentum p. The vertex reconstruction, the angle reconstruction, and the

momentum reconstruction procedures are summarized below. Details can be found in [18].

• Vertex reconstruction : The vertex reconstruction was done taking into account the

higher order correction terms and their dependences on the hit position, direction, and

the bend angle of the reconstructed tracks with momentum reconstruction in the three

dimensional phase space. The final vertex reconstruction is shown in Fig. 5.20 The

resolutions are ∼1 cm at a momentum of 0.95 GeV/c and ∼0.77 cm at a momentum

of 1.2 GeV/c.

• Angle reconstruction : The angle reconstruction was done by putting a sieve slit

plate (1.5 inches thick) in front of the magnet and reconstructing the hole pattern in

it by connecting the final vertex reconstruction and the hypothetical middle point in

the BigBite optics model. A vertical bending plane was assumed to exist in the middle

of the BigBite magnet and the reconstructed track from the wire chamber would have

an interception point in the middle plane. In other words, the reconstructed track

would cross the plane at some point and then it gets bent. This point is termed as the

hypothetical middle point. Fig. 5.21 shows the sieve slit pattern after the first order

correction (left), after the addition of the offsets (middle) and after the higher order

corrections (right). The red points show the real sieve slit holes and the black points

are the reconstructed ones. Details can be found in [18].
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Figure 5.20: The BigBite vertex reconstruction at a momentum of 1.2 GeV/c.

• Momentum reconstruction : The momentum calibration range of the BigBite

spectrometer (0.8 GeV/c to 2.2 GeV/c) was covered by the two elastic energy settings

as mentioned earlier. The detailed procedure of the calibration can be found in [18].

One of the important steps involved in this procedure was the energy loss effect for

both the beam and the scattered electrons while traveling through different materials

along the path. The energy loss can be approximated by the following equation :

ploss
p0

= 0.492 · exp(− L

X0
), (5.22)

where L is thickness of the material traversed by the electron with initial momentum p0

and X0 is the radiation length. The factor 0.492 is obtained by comparing the average

value and the peak value of the Landau distribution of the energy loss. Taking into

account all the energy loss effects and selecting the elastic electrons, the momentum

was reconstructed to first order as follows:

p(1) = z0 · p(1) + z1 + z2 · trx +
z3

θ
, (5.23)

where z0, z1, z2 and z3 are functions of the middle point positions [18] and trx is the

hit position in the first VDC plane. A momentum resolution of ∼1% for the entire

momentum range was achieved as shown in Fig. 5.22.
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Figure 5.21: The reconstructed sieve plate with different correction terms [18].

5.6 LHRS Optics Calibration

The scattered particles entering the LHRS acceptance need to be reconstructed to the target

very carefully to make sure that they come from the reaction vertex. The goal of the optics

calibration involved the calibration of the following optics variables that can be defined for

a fixed beam position (x, y):

• θtg and φtg : These two out-of-plane and in-plane angles determine the angular in-

formation of the Semi-inclusive Deep Inelastic Scattering (SIDIS) hadrons and the

angular separation of the asymmetries involved.

• ytg and zreact : ytg is the position of the reaction point in the LHRS frame and

zreact is the reconstructed vertex point. These are essential for the vertex coincidence
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Figure 5.22: The BigBite spectrometer momentum reconstructions at beam energies of
1.200 GeV/c and 2.396 GeV/c.

condition with the BigBite spectrometer to suppress random coincidence background.

• δtg : δtg is the momentum fraction dp
p which is important in the elastic asymme-

try studies and pressure curve analyses for better background subtraction as will be

discussed later.

Similar to the BigBite optics study, the multi-foil carbon target (7 foils termed “optics

target”) was used for the optics calibration. Data were taken with a sieve slit plate placed

at the entrance of the LHRS similar to the BigBite optics calibration. In addition, elastic

reference cell runs of 3He, H2, and N2 gases were used for different calibrations. A new

optimization routine was developed [19] and implemented using MINUIT27. The details of

the calibration procedure can be found in Refs. [19] and [117]. Here a brief summary of the

process is presented:

• Vertex reconstruction : The reaction vertex zreact was calibrated with reference to

the carbon foil positions from the survey report. Fig. 5.23 shows how well the carbon

foil peaks were reconstructed as compared to their actual positions. The average

resolution was ∼6 mm. The reaction vertices for the LHRS and the BigBite agree to

a level of 1 cm (1σ) for the coincidence case.
7Minimization tool available in the ROOT [116] software package.
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Figure 5.23: The z-component of the LHRS reaction vertex: each of the carbon foil peaks
was fitted and compared to the actual position from the survey report.

• Angle reconstruction : Similar to the BigBite optics analysis, the carbon foil runs

with the sieve slit plate inserted in front of the LHRS entrance were used to cali-

brate the angles. The angles θtg and φtg were optimized by minimizing the difference

between the calculated angle and the actual one from the survey report. The final

reconstruction of the sieve pattern is shown in Fig. 5.24.

• Momentum reconstruction : The momentum calibration was done using a similar

set of runs as used in case of angle reconstruction. The full momentum range of

the LHRS was covered by moving the carbon elastic peak across the focal plane

in a momentum scan, called δ-scan: dp
p0

= 0%, ±2% and ±4%. For each momentum

setting, the carbon ground state or a specific excited state was selected. The resolution

achieved was better than 0.05%.

5.7 Coincidence Time-of-Flight

E06010 measured Single Target Spin Asymmetries of the final state hadrons which were

detected in the LHRS coincident with the electrons detected in the BigBite spectrometer.

The coincidence times of detecting different types of hadrons and electrons are different

and can be used as a powerful particle identification technique to separate different types

of hadrons in the LHRS. In our case, the hadrons include pions and kaons which can be
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Figure 5.24: The reconstructed LHRS sieve slit plate.

identified using the coincidence time-of-flight technique in addition to the other particle

identification detectors such as the Aerogel gas C̆erenkov and the RICH detector. In order

to implement this method to identify hadrons that were coincident with the electrons, both

the two spectrometers had to be calibrated independently and in this section, a detailed

analysis of the calibrations is presented.

Basic Formalism:

The coincidence time (CT ) between the two spectrometers (LHRS and BigBite) is defined

as the time difference between the two particles are created in the reaction at the vertex. If

a pion is generated and detected in the LHRS at a time Tpion and an electron is generated
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and detected in the BigBite spectrometer at a time Te, then the coincidence time is defined

as

CT = Tpion − Te − C, (5.24)

where C is a constant which includes various timing offsets and triggers for both spectrom-

eters. The calibration for each detector involves determining and extracting the different

quantities in the above equation. As such, it is obvious that for a perfect system, the CT

spectrum should show a sharp peak at CT = 0 which implies that if for instance, a pion and

an electron are generated at the same time in the scattering reaction, the CT spectrum for

these two particles would have a peak at 0 with the proper offsets (C) corrected. Now for

different types of hadrons in the final state, the CT spectrum should show multiple peaks

at different timing locations. For example, if we calibrate the pion-electron CT spectrum to

be peaked at 0 ns, the kaon-electron or the proton-electron CT peak would be separated by

specific time from 0 ns depending on the time-of-flight of the kaon or proton. To be specific,

in our case the CT spectrum shows the peak of the kaon-electron coincidence separated by

∼1.8 ns and that of the proton-electron coincidence separated by ∼6 ns relative to the

pion-electron peak. Thus, the CT calibration involves the alignment of the pion-electron

CT peak to 0 ns as well as minimizing the width of the peak which not only improves the

hadron particle identification in the LHRS , but also greatly reduces the random coincidence

background.

In the analysis, the CT between the LHRS and BigBite is defined as:

CT = RFLHRS −RFBigBite −∆trigger, (5.25)

where RFLHRS/BigBite is defined as the amount of time between a vertex reaction and single

arm trigger, and ∆trigger is the time difference between the two single arm triggers. The

RFLHRS/BigBite includes contributions from the following factors:

• Time-of-flight : The amount of time the particle takes from the reaction vertex to

reach the detector timing plane (in our case, the S2m scintillator plane) depends on

the path length of the particle to reach a certain detector from the target.
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• Response time: This includes the detector timing response, cable delay, electronic

processing delay, etc.

• Time difference between the detector timing signal and the trigger signal. These

values were recorded using high resolution TDCs (50 ps for the LHRS and 60 ps for

BigBite).

In the analysis, RFLHRS/BigBite is defined in terms of the beam radio frequency (RF) signal

relative to the single arm trigger and it has a structure of sharp (Gaussian like) peaks every

2 ns. Each peak is a beam bunch separated by 2 ns. The RFLHRS/BigBite is calibrated

separately for each arm by minimizing the width of these peaks (beam bunches).

5.7.1 LHRS Timing Calibration

In the LHRS, the time reference was defined by the S2m scintillators. The 2 ns RF structure

of the beam bunch was used as a reference for the entire analysis and it can be defined as

RFLHRS = tRF −
(tL + tR)

2
+
Pathlength

c
, (5.26)

where tRF is the RF signal recorded in the TDCs relative to the single arm trigger, tL/R is

the time of a hit recorded in the left/right TDCs corrected for time offsets and timewalk (see

below) and Pathlength is the corrected pathlength of the particle in the LHRS determined

from the target vertex to the S2m scintillator plane. As can be seen from the above equation,

various corrections have to be implemented in order to minimize the timing resolution to a

level of a few hundred picoseconds in the RF structure. In the following subsections, each

of the corrections will be discussed in detail.

Pathlength correction

The LHRS pathlength can be expressed in general as:

L = L0 + a1 · x+ a2 · x2 + a3 · θ + a4 · θ2 + a5 · y + a6 · y2 + a7 · φ+ a8 · φ2, (5.27)

where the variables x, θ, y and φ are the coordinates of the particle in the TRANSPORT

convention as described in Ref. [12]. L0 is the constant term which is the distance from the

vertex to the S2m scintillator plane and is measured to be 25.7 m. It is worth mentioning

here that the dependences of the pathlength on x and θ were relevant upto second order
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while the dependences on y and φ could be ignored in the analysis as they were negligibly

small. However, the above equation can be expressed up to any order for all the variables

including the cross terms depending on the kinematic settings as well as the requirements

of the experiment. The terms up to second order are only specific to our experiment. The

objective of the pathlength calibration was to determine the coefficients (a1 to a8) by look-

ing at the dependences of the quantity RFLHRS on all the variables mentioned above.

Two methods were used to determine these dependences of the RF on different variables.

One was to look at the RF as a function of θ first since the dependence on θ was the

strongest of all. Once fitted with a second order polynomial and corrected for it, the RF

was then plotted as a function of x . Then it was fitted again with a second order poly-

nomial for x and corrected. Thus, once both θ and x were corrected for, there remained a

very little to do as the dependences on y and φ were really small and could be neglected.

The other method involved the minimization of the width of the RF structure by varying

all the parameters (x, θ, y and φ) together. A MINUIT based code was written specifically

for this analysis. Both methods were reasonably consistent with each other and only x and

θ corrections were applied finally. No corrections were applied to y and φ. Figure 5.25 and

Fig. 5.26 show the RF structure before and after the pathlength corrections as a function

of x, θ, y and φ. Note that each of the corrected plots are with all the corrections applied

and not with the individual correction for each term.

Time offset calibration and timewalk correction

Consider Eq.(5.26) where we have two terms tL and tR corresponding to the corrected times

of a hit at a particular paddle on both the left and right sides (TDCs). These can be defined

as follows:

tL = tL.raw − tLoff − tLtw, (5.28)

tR = tR.raw − tRoff − tRtw, (5.29)

where tL.raw(R.raw) is the raw time recorded by the left(right) TDC, tLoff(Roff) is the offset

corresponding to left(right) TDC and tLtw(Rtw) is the timewalk correction to the left(right)

TDC. All these corrections were applied to each paddle separately for both left and right

photomultiplier tubes (PMTs) each of which was connected to an ADC and a TDC.
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Figure 5.25: The x and θ dependences of RF without (left) and with (right) pathlength
corrections.

The time offset calibration of each paddle in the S2m plane involved making corrections

to the raw time measured by the TDC for the different hit positions along the bar and for

different cable length delays. The corrections were done to both TDCs in each paddle, i.e.,

the offsets were determined separately for left and right TDCs. For the offset calibration,

only those events were chosen which fire two adjacent bars together. We called those events

two-bar-hit events with tight ADC cuts. The alignment of the time offsets of the paddles

in S2m as well as the aligned projections of the x positions of the tracks in the paddles are

shown in Fig. 5.27.

The timewalk effect is caused by the dependence of the TDC signals on the ADC ampli-

tudes. A large ADC amplitude and a small ADC amplitude have TDC signals at different

times and there is a linear dependence of the TDC signals on the ADC amplitudes. This

effect is of the order of a few picoseconds (20 ps to 30 ps). The timewalk is defined as
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Figure 5.26: The y and φ dependences of RF without (left) and with (right) pathlength
corrections.

follows :

tLtw = K ·

(
1√

ADCL
− 1√

ADCmip

)
, (5.30)

tRtw = K ·

(
1√

ADCR
− 1√

ADCmip

)
, (5.31)

where ADCL(R) is the ADC signal for left (right) PMT for a particular paddle and ADCmip

is an arbitrary timing offset declared for a MIP (minimum ionizing particle) for which the

timewalk is zero. For our experiment, it was set to 50 ns.

Now if we write Eq.(5.26) in terms of all these corrections , we have,

RFLHRS = tRF −
(tL.raw − tLoff − tLtw + tR.raw − tRoff − tRtw)

2
+
Pathlength

c
(5.32)
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Figure 5.27: The x projection of the tracks in the S2m paddles and the time offsets before
(left) and after (right) correction.

Rearranging the terms yields:

RFLHRS = tRF −
(tL.raw − tLoff + tR.raw − tRoff )

2
+
Pathlength

c
+ TW, (5.33)

where TW is now defined as :

TW = K ·
(

1√
ADCL

+
1√

ADCR
+ constants

)
. (5.34)

Hence, in order to correct the timewalk effect, the RFLHRS was plotted as a function of

( 1√
ADCL

+ 1√
ADCR

) for each paddle and the slope K was determined. Once K was determined

for each paddle, it was applied to the left and right TDCs with opposite signs to get rid

of the overall effect. The timewalk effects and the respective corrections for both electrons

and pions in the LHRS for a particular scintillator paddle are shown in the Fig. 5.28 and

Fig. 5.29. Since the timewalk correction was only allowed for one particle in the analyzer
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database, we chose to correct the pion timewalk effect as we got rid of the electrons in the

LHRS anyway.

Figure 5.28: Timewalk effect for the electrons in S2m (paddle 8).

Figure 5.29: Timewalk effect for the pions in S2m (paddle 8).

After taking into account all these corrections, a resolution of ∼140 ps was achieved

for the RF structure in the LHRS. Fig. 5.30 shows the final RF structure after all the
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corrections were applied.

Figure 5.30: The RF structure in the LHRS for pions and electrons after all the corrections
have been applied. The resolution of the pions is ∼141 ps while that of the electrons is
∼132 ps.

5.7.2 BigBite Timing Calibration

Similar to the LHRS timing calibration, the BigBite spectrometer timing calibration in-

volved the same procedure of using the 2 ns RF structure of the beam bunch as a reference.

The timing detector inside the BigBite spectrometer is a 13-bar scintillator plane inserted

between the preshower and shower lead glass detectors. Here we have

RFBigBite = tRF −
(tL + tR)

2
+
Pathlength

c
, (5.35)

where the definitions of the quantities in the equation are exactly the same as before in

Eq.(5.26), but with respect to the BigBite scintillators. RFBigBite is comparatively sim-
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pler as far as the contributions from different variables are concerned due to its shorter

parthlength and similarity of the particles detected. The timing calibration for the BigBite

spectrometer included the pathlength correction, time offset, and timewalk correction for

the scintillators which will be discussed in the following subsections.

Pathlength correction

The BigBite spectrometer was at an angle of 30◦ with respect to the electron beam and at

a distance of 1.5 m from the center of the target. Hence, due to its short distance from the

vertex, the pathlength traversed by a generated or scattered particle in the reaction basically

depended on the out of plane angle, θvdc, with respect to the plane perpendicular to the

detector plane. A simple linear correlation was used to correct the pathlength differences:

L

c
= 1.4 · θvdc, (5.36)

where θvdc is the tangent of the vertical track angle measured by the Vertical Drift Chambers

(VDC). θvdc is highly correlated with the vertical hit position on the chamber. Unlike the

LHRS, any additional higher order terms on other tracking parameters were found not to

make any noticeable improvement to this correction on θvdc.

Time offset calibration and timewalk correction

The time offset correction for all the paddles in the scintillator plane was done by selecting

the events that fire only two neighboring paddles. In other words, for a particular paddle,

either the paddle just above or just below was chosen and it was required that the selected

events should fire both paddles together. Then the timing difference between these two

paddles was minimized by applying an offset for each PMT.

The timewalk effects in the PMTs on the BigBite scintillators were comparatively larger

than those in the LHRS. However, a very simple functional form could be defined to de-

scribe the behavior of the TDC signals as a function of the ADC signal amplitudes. Hence

in this case the timewalk corrections could be expressed as :

TWBigBite = −17.9(ADC − PED)−0.140ns, (5.37)

where ADC stands for the usual ADC signal channel peak and PED is the corresponding

pedestal value for that PMT.
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The final resolution of the RF time for the BigBite spectrometer was calibrated to ∼270 ps

(1σ) as shown in Fig. 5.31. The intrinsic resolution of the scintillator, the open geometry

of the BigBite magnet, and the noisy environment limited any further improvement in the

resolution.

Figure 5.31: The RF structure in the BigBite scintillator for electrons after all the correc-
tions were applied. The resolution in this case is ∼270 ps [19].

5.7.3 Two Arm Coincidence Time Calibration

The two single arm RF calibrations (LHRS and BigBite as discussed above) were applied in

Eq.(5.25) to achieve the final coincidence time-of-flight (CTOF) for the reaction (e,e′π±).

The last term in Eq.(5.25) was measured by a TDC with a resolution of 60 ps. Another

similar calibration was done for the reaction (e,e′γ) as the BigBite spectrometer was con-

siderably dominated by photon induced events. This latter calibration was useful to get

rid of the photon backgrounds. For the reaction (e,e′π±), the resultant CTOF reached a

resolution of ∼340 ps (1σ) as shown in Fig. 5.32 whereas for the (e,e′γ) reaction a resolution

of ∼400 ps was achieved.

Prior to taking production data in E06010, a priliminary check of the detectors and
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Figure 5.32: The final CTOF spectrum for the reaction (e,e′π). Here, the CT spectrum is
shown for the LHRS with positive polarity. When the LHRS was in negative polarity, the
spectrum looks the same except that there would not be any proton peak on the left [19].

the target was performed by taking ~e-3 ~He scattering data in the elastic region. As the 3He

elastic cross section and the asymmetry are known for a given electron beam energy and

LHRS scattering angle, the elastic asymmetry measured from the data can be compared

with the prediction and used to perform an initial check of the detectors as well as the

target polarization. The analysis formalism and the results of the elastic data analysis are

presented in the following section.

5.8 Calibration and Analysis of Elastic Events

At the beginning of the experiment, elastic ~e-3 ~He data were taken on the cell “Maureen”.

The incident beam energy was 1.230 GeV and the LHRS had a momentum setting of 1.21

GeV/c at an angle of 16◦ with respect to the electron beam. The elastic data have been

used to determine the sign convention for beam helicity and target spin direction. The

elastic physics asymmetry can be calculated precisely and a simulation was done before the

experiment to predict the expected asymmetry at the respective settings of beam energy,

spectrometer angle, and target spin direction. This calculated asymmetry was non-zero

and the measured raw asymmetry was compared to the predicted value. Hence, this mea-

surement was used to verify the sign of the product of beam and target polarizations. In

E06010, we did not have the ability to polarize the 3He gas longitudinally, i.e., along the
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incoming beam direction. Hence, in order to collect the elastic data with the longitudinally

polarized spins of the 3He atoms, the atoms were polarized in the transverse direction first.

Once a reasonable polarization (∼45%) was achieved, the holding field was rotated from the

transverse direction to the longitudinal direction and was left there during the data taking

without any continuous pumping by the lasers. This implies that during data taking, the

polarization of the 3He gas was decreasing exponentially with time. The analysis details

are presented in the later subsections. The data were taken by flipping the beam helicity

at a rate of 30 Hz. In order to reduce any systematic effects, the beam half wave plate was

inserted for part of the data so that the entire flipping sequence of the beam helicity got

reversed.

In this section, the elastic ~e-3 ~He scattering formalism will be summarized and then the

analysis results will be discussed and compared with the simulated results.

5.8.1 Physics Formalism of Elastic ~e-3 ~He Scattering

In elastic scattering, the energy of the scattered electron, E′, having an incident energy E0,

is given by:

E′ =
E0

1 + 2E
M sin2( θ2)

, (5.38)

where M is the mass of the target (3He in this case) and θ is the scattering angle with

respect to the direction of four momentum transfer Q2. It is:

Q2 = 4E0E
′ sin2(

θ

2
). (5.39)

Further the Rosenbluth formula for the unpolarized elastic cross section is [118]:

d2σ

dΩdE′
= σMOTT

[
2W1(Q2) tan2(

θ

2
) +W2(Q2)

]
, (5.40)

where the Mott cross section, σMOTT , for the target nucleus with charge Z is given by :

σMOTT =
Z2α2 cos2( θ2)

4E2 sin4( θ2)
. (5.41)
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The form factors W1(Q2) and W2(Q2) that appear in the Rosenbluth formula are often

expressed in terms of so called Sachs form factors as follows :

W1(Q2) = τG2
M (Q2), (5.42)

W2(Q2) =
G2
E(Q2) + τG2

M (Q2)
1 + τ

. (5.43)

The Sachs form factors G2
E and G2

M are called the electric and magnetic form factors,

respectively. The recoil factor τ is defined as :

τ =
Q2

4M2
. (5.44)

The electric and magnetic form factors are related to the Dirac form factor, F1(Q2), and

Pauli form factor, F2(Q2), through the relations :

F1(Q2) =
τGM (Q2) +GE(Q2)

1 + τ
, (5.45)

F2(Q2) =
GM (Q2)−GE(Q2)

1 + τ
. (5.46)

One can express the unpolarized elastic cross section using different form factor notations as

defined above. The charge and magnetic form factors of 3He have been measured precisely

and those can be related to the elastic unpolarized cross section as follows [119]:

d2σ

dΩdE′
=
σMOTT

η

[
Q2

|~q|2
Fc

2(Q) +
µ2Q2

2M2

(
1
2
Q2

|~q|2
− tan2(

θ

2
)
)
Fm

2(Q)
]
, (5.47)

where η=1− Q2

4M2 and µ is the magnetic moment of 3He. Fc and Fm are the electric and

magnetic form factors of 3He, respectively.

For the polarized elastic cross section, an additional electron helicity dependent term has

to be added to the unpolarized cross section where it is assumed that the polarization of
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the scattered electron is not measured. The formalism is extensively discussed in [120].

According to this formalism, the cross section difference for the polarized case is given by :

[
d2σ

dΩdE′

]+1

−
[
d2σ

dΩdE′

]−1

= −σMOTT

[
VT ′RT ′(Q2) cos θ∗

+ VTL′RTL′(Q2) sin θ∗ cosφ∗
]
, (5.48)

where θ∗ and φ∗ are the polar and azimuthal angle of the 3He spins with respect to the

three-momentum transfer ~q. The superscripts +1 and −1 indicate the two helicity states

of the incoming electrons. The response functions RT ′ and RTL′ and the kinematic factors

VT ′ and VTL′ are defined as follows :

RT ′(Q2) =
2τE′

E
(µAFm)2, (5.49)

RTL′(Q2) = −
2
√

2τ(1 + τ)E′

E
(ZFc)(µAFm), (5.50)

VT ′ = tan
θ

2

√
Q2

|~q|2
+ tan2 θ

2
, (5.51)

VTL′ = − Q2

√
2|~q|2

tan
θ

2
. (5.52)

Now Eq.(5.47) gives the cross section averaged over the electron helicity states and Eq.(5.48)

gives the cross section difference between the electron helicity states. Hence the elastic

asymmetry can be formed by dividing Eq.(5.48) by Eq.(5.47) :

Aelastic =
−η
[
VT ′RT ′(Q2) cos θ∗ + VTL′RTL′(Q2) sin θ∗ cosφ∗

][
Q2

|~q|2Fc
2(Q) + µ2Q2

2M2

(
1
2
Q2

|~q|2 − tan2( θ2)
)
Fm

2(Q)
] . (5.53)

5.8.2 Elastic Asymmetry Results and Target Spin Sign Convention

The elastic 3He data were taken with an incoming beam energy of 1.23 GeV while the 3He

target was polarized along the beam direction, i.e. longitudinally with respect to the beam.
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One important aspect of the elastic data taking was that we did not continuously pump

and polarize 3He while taking data as there was no provision to polarize 3He longitudinally

during this experiment. The 3He gas was polarized using the transverse line of the lasers

and then the holding field was rotated from the transverse to the longitudinal direction. It

was left there during data taking. Once we took data for few hours and realized that the

polarization reached a very low value, we stopped and restarted pumping in the transverse

direction after rotating the holding field from the longitudinal to the transverse direction.

The process was repeated until we had enough data to analyze the asymmetries. Figure 5.33

shows the average target polarization during each elastic run. As can be seen from the plot,

the polarization decreased exponentially while we were taking data. Once we reached a

minimum polarization value of ∼28% , we restarted the laser pumping to polarize the

target which is shown by the arrow at point A in the plot.

Figure 5.33: The polarization of the target during the elastic data taking. A few measure-
ments of polarization were performed in between the runs. The points corresponding to
each run were determined after an interpolation of the measured polarization value between
the runs. The huge drop between the third and the fourth points was due to some tech-
nical issues in the Hall where we had to stop the beam and waited for some time without
polarizing the target.

The raw asymmetries were calculated by choosing the elastic events within the elastic
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peak in the 3He invariant mass spectrum (W) for the two opposite helicity states of the

electron beam (positive and negative). Then the ratio of the difference of the normalized

yields between these two helicity states to the corresponding sum was formed. If N+ and

N− denote the number of elastic events in the positive beam helicity state (+) and in

the negative beam helicity state (−), respectively, then the raw elastic asymmetry can be

expressed as :

Araw =
N+

Q+L+ − N−

Q−L−

N+

Q+L+ + N−

Q−L−

, (5.54)

where Q+/− and L+/− are the charge and livetime corrections, respectively, for the two

beam helicity states (+/−). The raw asymmetries are shown in Fig. 5.34. Data were taken

with both the beam half wave plate (BHWP) in and out as it can be seen from the plot

that the asymmetry changes sign when the BHWP was inserted.

Figure 5.34: The 3He raw elastic asymmetries.

In order to calculate the physics asymmetry, the raw 3He asymmetry was corrected

for the target polarization, the beam polarization, and the N2 dilution. In addition, a

correction factor of −1 had to be multiplied to the measured asymmetries when the BHWP

was inserted. The corrected physics asymmetries are shown in Fig. 5.35 where Aphy is
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defined as :

Aphy =
1

Pb · Pt · ηN2

Araw, (5.55)

where the quantities in the above equation are :

• Pb : Polarization of the electron beam. The Møller measurement showed the beam

polarization during the period of elastic data taking was ∼88% with a statistical

uncertainty of ∼0.2%.

• Pt : Polarization of the target. As shown in Fig. 5.33, a 3He polarization number for

each elastic run could be determined.

• ηN2 : N2 dilution factor determined from a N2 reference cell run compared to a

polarized 3He run in the elastic setting. This is discussed in an upcoming section. It

was determined to be ∼0.945 with a statistical uncertainty of ∼0.005.

Figure 5.35: The 3He physics elastic asymmetries.

The asymmetries for all the runs were fitted with a zeroth order polynomial and the

final result with the LHRS at 16◦ and an incident beam energy of 1.230 GeV was obtained

from the fit :

Aphy = 0.045± 0.003. (5.56)
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The main objective of taking data in the elastic setting was to verify that our system

was working reasonably well and hence, it was a good test of our detector and especially

of the target system as the physics asymmetry for the data could be simulated well ahead

with a reasonably good precision. The simulation was performed using the standard Hall A

SAMC (Single Arm Monte Carlo) and the details can be found in [121]. The fundamental

inputs to the simulation included the initial electron beam energy, the angle of the scattered

electron and the target spin angle with respect to the beam (0◦ corresponds to the target

spin parallel to the incoming beam and 180◦ to that of the target spin anti-parallel to the

incoming beam). However, it was essential to implement all the same cuts that were used in

the analysis and in addition, all the radiative corrections had to be applied. These included

the energy loss of the incoming beam and the outgoing scattered electrons passing through

different materials until they reached the detector. The complete table of the materials that

the incoming electrons as well as the scattered electrons passed through and their radiation

lengths can be found in Appendix C. Taking into account all the correction factors, the

SAMC simulation yielded an elastic physics asymmetry for polarized 3He target at our

settings of

AMC
phy = 0.048± 0.02(syst.). (5.57)

The dominant systematic uncertainties in the measured elastic asymmetry came from

the beam and target polarizations along with the N2 dilution. The systematic uncertainties

in beam and target polarizations are 2.5% and 3%, respectively, whereas the uncertainty in

the N2 dilution is ∼0.5%. On the other hand, the systematic uncertainties in the SAMC

simulation include the uncertainties in the magetic form factor Fm (±0.001), and the elec-

tric from factor Fc (±0.002) [119]. Moreover, uncertainties in the beam energy (±1 MeV),

the central angle of LHRS (±0.06◦, [122]), the central momentum of LHRS (± 0.00005

GeV/c, [117]), the target spin angle (± 0.1◦) and other radiative corrections due to the

different materials present in path of the incoming and outgoing electrons lead to another

systematic uncertainty of ∼1.1% in the simulation. Thus, the total systematic uncertainty

in the asymmetry from the simulation is ∼1.6% and that from the measurement is ∼4%.

The measured elastic physics asymmetry was within 5% relative to the expected asym-

metry from the simulation which indicated that our detector system as well as the target
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systems were behaving properly and the target polarization measurement was reliable.

The absolute target spin sign could also be determined from this analysis. The SAMC

results showed that the physics asymmetry for the target spin aligned parallel to the beam

direction, i.e. at 0◦, was positive. In the measurement, it was found that the raw asym-

metry was positive when the target spins were aligned along the longitudinal holding field

which was along the beam direction. It was defined as 0◦ which was consistent with the

simulation. The target polarization Pt is positive in this case. On the other hand, if we

would have rotated the target spins by 180◦, the asymmetry would have become negative

and in that case, we needed to put a negative sign in front of the polarization to make it

consistent with the expected results. Thus, in conclusion, the measured elastic raw asym-

metry was positive with the target spins parallel (+) to the beam direction and negative

with the target spins anti-parallel (−) to the beam direction which was consistent with the

results of the simulation.

5.9 Delta (∆(1232)) Asymmetry Results

A set of polarized 3He data was also taken in the ∆ resonance region. The purpose of

taking this set of data was also to verify the system reliability to complement the results of

the elastic analysis. The raw and physics asymmetries for the ∆ kinematics were defined

exactly the same way as in case of the elastic asymmetries. The data were taken with the
3He atoms polarized in the transverse direction which means that the spins were aligned

in the scattering plane perpendicular to the incoming electron beam. The only difference

between this analysis and the elastic one was that the polarization during the entire period

of data taking with the ∆ resonance settings was not decreasing unlike the elastic case and

hence, one 3He polarization number for all the runs was applied to the fitted result of the

raw asymmetries. The raw asymmetries in the ∆ region for the polarized 3He are shown in

Fig. 5.36.

The ∆ resonance asymmetries were measured with an incoming beam energy E0 =

1.230 GeV and the LHRS at 16◦ with respect to the beam. The corresponding Q2 was 0.08

GeV2/c2. From Fig. 5.36 we find that the raw asymmetries are positive for the transverse

“+” target polarization and negative for the transverse “−” target polarization. Our mag-

netic holding field configuration was defined in such a way that transverse “+” corresponded
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Figure 5.36: Raw ∆ resonance asymmetries. The asymmetry changes sign as the polariza-
tion direction is reversed from transverse + to transverse −. All these measurements were
done with the beam half wave plate inserted.

to the situation when the target spins were parallel to the holding field and the field itself

pointed at 90◦ to the beam left (in plane). Similarly, the transverse “−” case was for the

target spins aligned anti-parallel to the field which was at 270◦ to the beam right. Hence,

the signs of the target polarization in both the cases are :

[Pt]transverse+ = +, [Pt]transverse− = −. (5.58)

The raw asymmetries measured in these cases are :

[Araw]transverse+ = −0.004± 0.001, [Araw]transverse− = +0.006± 0.002. (5.59)

These measurements were performed with the beam half wave plate inserted and hence a

correction factor −1 was multiplied to the measured raw asymmetries. In order to estimate

the physics asymmetries, an average target polarization of 45% and a N2 dilution factor of

0.94 were employed with to beam polarization of 88% from the Møller measurement . Thus,
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the physics asymmetries in both the cases were evaluated approximately as follows :

[Aphy]transverse+ =
1

PtPbηN2

(−0.004) = −1.1± 0.002, (5.60)

[Aphy]transverse− =
1

−PtPbηN2

(0.006) = −1.6± 0.002. (5.61)

Thus taking the avergage, the final physics asymmetry is determined to be −1.3% at Q2 =

0.08 GeV2/c2.

5.10 N2 Dilution in 3He

The polarized 3He target cell contains a very small amount of N2 in order to quench any

unpolarized light emitted in the optical pumping process. In other words, the optically

pumped Rb or K atoms undergo a process of relaxation with the N2 atoms where they do not

get depolarized. The relaxation process of the alkali atoms with the N2 is not accompanied

by the emission of photons and hence it is named as photon-less deexcitation [104] as the

energy is absorbed in the nitrogen’s rotational and vibrational motions. Thus, filling the

polarized 3He cell with N2 improves the polarization of the alkali atoms in the pumping

chamber and can be used as a buffer gas. However, during a scattering experiment, events

are generated from reactions between the incoming electrons and the N2 atoms as well.

These cannot be distinguished from real scattering events off 3He atoms just by using

various informations from the detectors. Since the N2 is unpolarized and its cross section is

large as compared to that of polarized 3He, the measured asymmetry of 3He is diluted by

the events generated from the scattering off the N2 atoms. Hence, in the analysis, a nitogen

dilution factor was determined by comparing the yield from nitrogen events generated in

the reference cell and the yield from the polarized 3He cell normalized by charge, livetime,

pressure, etc. The N2 dilution factor can, thus, be definded as :

ηN2 =
Y3He

Y3He + YN2

=
σ3Heρ3He

σ3Heρ3He + σN2ρN2

, (5.62)

where Y3He(YN2) is the yield of 3He (N2), σ3He(σN2) is the cross section of 3He (N2) and

ρ3He(ρN2) is the density of 3He (N2) inside the polarized 3He cell. The filling densities for
3He and N2 were used and are listed in Table. 5.3:

The dilution factor was calculated for each of the four x bins and is shown in Fig. 5.37.

The x bins here represent the Bjorken x bins introduced in chapter 1 and chapter 2. Our
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Table 5.3: The filling densities of 3He and N2 for all the three cells used in the experiment.

3He cell 3He density (amg) N2 density (amg)
Astral 8.08 0.110
Maureen 7.52 0.106
Brady 7.87 0.110

final data will be binned into these four x bins and hence, a N2 dilution factor for each x

bin had to be determined.

Figure 5.37: The N2 dilution factors for all the four x bins. The three points for each bin
correspond to the three cells used in the experiment. The points are for Astral, Maureen,
and Brady respectively from the left for each x.

The uncertainties in the analysis include the relative uncertainty of the 3He filling den-

sity (∼2%), N2 filling density (∼5%), and the filling pressure in the N2 reference cell (∼1

psig). The radiative correction was assumed to be 10% of the cross section ratio σ3He
σN2

[18].

The error bars in the Fig. 5.37 are determined by the following expression where the statis-

tical uncertainties from the cross sections are combined with the systematic uncertainties

mentioned above.
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∆ηN2 = η2
N2

σN2ρN2

σ3Heρ3He

√(
∆σN2

σN2

)2

+
(

∆σ3He

σ3He

)2

+ (0.1)2 + (0.05)2 + (0.02)2, (5.63)

where ∆σ3He(∆σN2) is the statistical uncertainty related to the 3He (N2) cross section. The

final number of the N2 dilution for each bin was determined by taking the average of all the

three numbers for the three cells. The dilution factors are listed in Table 5.4:

Table 5.4: N2 dilution factors for each x bin for π− production.

x bin ηN2 ± ∆ηN2

1 0.9242 ± 0.006
2 0.9066 ± 0.007
3 0.8998 ± 0.008
4 0.9153 ± 0.007

5.11 BigBite Spectrometer Contamination Study

The BigBite spectrometer in E06010 was used to detect the electrons that were coincident

with the hadrons in the LHRS within a momentum range of 0.6 GeV/c to 2.1 GeV/c. In ad-

dition, single electrons (T1/T6 trigger) that were not coincident with the hadrons in LHRS

and single negatively charged pions (inclusive T1/T6 events) were also detected in order

to extract inclusive asymmetries as witness channels. However, it turned out that the real

coincidence electrons (T5 trigger) were mostly contaminated by photon induced electrons

followed by negative hadrons. Since it was extremely difficult to separate the negative pions

from kaons in the BigBite spectrometer, the term “negative hadrons” is used here. Never-

theless, the pions were the dominating particles. The BigBite spectrometer contamination

study involved studying the contamination of photon induced electrons as well as different

hadrons to the real DIS coincidence electron sample. This will be discussed in the next

subsection. Prior to that, it is worthwhile to describe the various particle identification

(PID) cuts used in the BigBite detector system in general as well as for different systematic

studies. The coincidence cuts used in the final physics analysis will be discussed in chapter 6.

The PID in the BigBite spectrometer was achieved primarily by using the preshower and

shower detector combined with the momentum reconstruction information from the MWDC.
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The PID process was implemented to identify four different types of particles : electron like,

negative hadron like, positive hadron like, and photon like. However, there were a few general

cuts that had to be applied to all the charged particle identifications:

• Charge type cut : The simple dipole magnet in the BigBite spectrometer bends the

negatively charged particles upwards while the positively charged particles are bent

downwards. A clear separation of different charged particles can be achieved in the

reconstructed vertical positions of the tracks in the MWDC planes. Consequently,

both types of particles were flagged separately.

• Optics validity cut : The optics validity cut was implemented to exclude the very

top and bottom sections of the BigBite magnet where the magnetic field was much

weaker and hence, the optics reconstructions were not reasonable. Figure 5.38 shows

the implementation of this cut.

Figure 5.38: The optics validity cut in the BigBite spectrometer. The black points show
all the reconstructed events in the spectrometer while the red points show the events that
pass the optics validity cut. As can be seen, the events corresponding to the edges of the
magnet have been removed.
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• Track quality cut : The track quality cut is defined as follows :

tε =
χ2

Ndf
=

1
Ndf

∑
j

[xrecon − xtrack]2

r2
j

, (5.64)

where xrecon is the reconstructed hit position and xtrack is the projected hit position.

Ndf is the degree of freedom which is related to the number of MWDC planes involved

in the track reconstruction and rj is the resolution assumed in the tracking software.

A cut of tε <2.4 was used to get rid of the reconstructed tracks having higher tε. The

details of the analysis can be found in [18].

• Track matching cut : The track matching implies the fact that the center of the

reconstructed shower cluster position from the calorimeter should match the projected

position of the reconstructed track on the shower [18]. Only events which pass this

track matching cut are selected for the analysis.

• Preshower/shower PID cut : The PID in the preshower and shower detector was

realized by using a 2-D cut on the energy deposited in the preshower vs. the ratio of

the total energy to the reconstructed momentum (Ep ) in the shower. Figure 5.39 shows

a typical 2-D plot where the electrons and the negative pions are clearly separated.

• Interaction vertex cut : The interaction vertex cut is shown in Fig. 5.40.

In addition to the above mentioned general cuts, few specific cuts were applied to identify

different particles in BigBite. Those are listed below:

Cuts for electron like events :

• Charge type cut = Negative.

• Energy in preshower Eps >0.2 GeV.

• Momentum cut: 0.6 GeV/c< p <2.5 GeV/c.

• Calorimeter E
p cut (momentum dependent): For different momentum bins, the E

p was

fitted with a Gaussian function and a 2.5 σ cut was applied to choose the electrons in

each bin.
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Figure 5.39: The energy deposition in the preshower vs. the E
p of the total shower.

• Position match cut: As mentioned earlier in case of the general cuts, the shower cluster

center was matched with the projected track position. For different momentum bins,

the track match X and Y distributions were fitted with Gaussian functions and a 3 σ

cut was applied as a standard cut [18].

Cuts for positron like events:

• Charge type cut = Positive.

• Energy in preshower Eps >0.2 GeV.

• Momentum cut: 0.6 GeV/c< p <2.5 GeV/c.

• Calorimeter E
p cut (momentum dependent): a 2.5 σ cut was applied.

• Position match cut: a 2.5 σ cut was applied.

Cuts for negative hadron like events:

• Charge type cut = Negative.
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Figure 5.40: The reconstructed vertex. Electron like events were chosen to generate the
plot. The cuts for the coincidence as well as singles events are shown which are slightly
different.

• Energy in preshower Eps <0.15GeV.

• Momentum cut: 0.6 GeV/c< p <2.5 GeV/c.

• Position match cut: a 2 σ cut was applied.

Cuts for positive hadron like events:

• Charge type cut = Positive.

• Energy in preshower Eps <0.15GeV.

• Momentum cut: 0.6 GeV/c< p <2.5 GeV/c.

• Position match cut: a 2 σ cut was applied.

Cuts for photon like events:

• Energy in preshower Eps >0.2GeV.

• No total shower cluster found that matches the tracks. Photon like events do not have

tracks.
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• The shower cluster was matched with the preshower cluster.

• Total energy deposition is between 0.6 and 2.5 GeV.

5.11.1 π− Contamination Study

In the BigBite spectrometer, one of the largest contamination to the electrons are the neg-

ative pions (π−). However, having the calorimeters as the only PID detectors, there is

no direct way to determine the π− contamination to the electrons. Instead, the following

method was employed to estimate the π− contamination in the BigBite spectrometer. The

comparison with the Monte-Carlo will be presented in the later sections. The contamination

study was performed by X. Qian and K. Allada [18].

Integral method for T1 events (singles) :

In this method, the energy deposition of the preshower detector is plotted for different

momentum bins without any cuts on the ADC channels. As shown in Fig. 5.41, the neg-

ative pion peak is centered around ADC channel 200 and fitted with a Gaussian function

that is convoluted with Landau distribution function. On the other hand, the electron peak

is fitted with a Gaussian from the ADC channel 400 onwards.

Then the π− contamination of the electrons can be defined as :

δπ−→e− =

∫∞
400 g(x)dx
Ne(> 400)

. (5.65)

Here, g(x) is the Gaussian convoluted Landau distribution function integrated from chan-

nel 400 to the maximum. Ne is the number of electrons under the Gaussian peak above

channel 400. Thus, the integral over g(x) gives the number of negative pions leaking into

the electrons when a cut on the ADC channel > 400 is applied. A similar procedure is ap-

plied with the T6 events as well. However, two methods were applied to calculate the pion

contamination of the electrons in the case of the T5 coincidence events. The first method

was the usual integral method explained above for the T1 events. The second method was

the method that used the fact that the T5 trigger was formed from the T1 trigger and can

be named as suppression factor method. It is described as follows:
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Figure 5.41: The pion contamination to electrons in BigBite for various momentum bins
for T1 events.

Suppression factor method for T5 coincidence events:

In this method, we used the contamination number determined for the T1 events. A sup-

pression factor can be defined as follows :

γsup =
Y T5
π−π±/Y

T1
π−

Y T5
eπ±/Y

T1
e

=
Y T5
π−π±

Y T5
eπ±

· 1
δT1
π−→e−

. (5.66)

Here, Y T5
π−π± is the yield of the π− mesons in the BigBite spectrometer which are coincident

with the hadrons in the LHRS and Y T5
eπ± is the yield of the electrons coincident with the

hadrons in the LHRS. Then the ratio
Y T5
π−π±
Y T5
eπ±

gives the pion contamination of the electrons

for the coincidence case which can be expressed as :

δT5
π−→e− = γsup · δT1

π−→e− . (5.67)

The results from both the methods are summarized in Table 5.5 where both the positive

and negative polarities in the LHRS are considered. In all four momentum bins of the

BigBite spectrometer, the negative pion contamination to the coincidence electrons in the
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DIS region is below 3%.

Table 5.5: The T5 events pion to electron contamination study in BigBite.

LHRS polarity Mom. range (GeV/c) Integral method (%) Suppression method (%)
negative 0.6 - 0.8 1.20 0.83
negative 0.8 - 1.0 0.60 0.45
negative 1.0 - 1.4 0.11 0.30
negative 1.4 - 2.0 0.12 0.07
positive 0.6 - 0.8 3.10 2.87
positive 0.8 - 1.0 1.44 2.13
positive 1.0 - 1.4 1.25 1.70
positive 1.4 - 2.0 0.27 0.47

5.11.2 Photon Induced Electron Contamination

The photon induced electrons contributed 70% to the contamination of the electrons in case

of T1 trigger events. The origin of these photon induced electrons was neutral pions (π0)

generated during the scattering process. The π0 meson has a very short mean lifetime of

8.4×10−17 s and the two main decay modes of the π0 mesons are :

π0 = γ + γ, π0 = γ + e+ + e−. (5.68)

The main decay mode of the π0 meson into two photons has a probability of 98% while the

secondary decay mode into a photon and an electron-positron pair has a probability of 1%.

Thus, a π0 meson produced in the reaction quickly decays into photons inside the target

cell. The photons generated from this decay then interact with the materials such as the cell

walls, etc. and produce electron-positron pairs. Hence, irrespective of the decay modes that

the neutral pions undergo, the final electrons could reach the spectrometer. These photon

induced electrons were the largest contamination which could easily be misidentified as real

DIS electrons. Since these photon induced electrons are always associated with the positrons

produced in the same decay, the contamination of such electrons could be estimated with the

help of the positrons. Assuming that the kinematics of the photon induced electrons and the

positrons are the same, the BigBite polarity was switched to positive so that the positrons

now were bent upwards analogous to the electrons in the negative mode. This allowed the

positrons to have the same acceptance in the BigBite spectrometer as the electrons under
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normal operation and thus, the yield of the positron in the positive polarity mode was

compared to the yield of the electrons in the negative polarity mode. The comparison of

the yields of the positrons and the electrons in both singles and coincidence cases is shown

in Fig. 5.42.

Figure 5.42: The yields of electron-like events in the negative polarity mode compared to
the positron-like events in the positive polarity mode in the BigBite spectrometer. The red
data points represent the positrons and the black data points represent the electrons. Both
negative and positive polarities in the LHRS were considered. The large error bars indicate
the low statistics of the positron-like events [18].

Both yields are comparable at low momentum because of the large π+ contamination of

the positrons. Once the π− meson contamination of the electrons and π+ meson contami-

nation of the positrons were determined, the ratio of the positron to electron yields would

give an estimation of the photon induced electron contamination of the DIS electrons. The
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results are summarized in Table 5.6.

Table 5.6: The γ -induced electron contamination of the DIS electrons in the BigBite
spectrometer for the coincidence events (T5 trigger).

LHRS polarity Mom. range (GeV/c) Contamination (T5)(%)
negative 0.6 - 0.8 22
negative 0.8 - 1.0 6.9
negative 1.0 - 1.4 1.7
negative 1.4 - 2.0 1.6
positive 0.6 - 0.8 19.6
positive 0.8 - 1.0 3.8
positive 1.0 - 1.4 1.2
positive 1.4 - 2.0 0.6

Copyright c© Chiranjib Dutta 2010
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CHAPTER 6: ASYMMETRY ANALYSIS AND RESULTS

The primary physics goal of experiment E06010 was to extract the Collins and Sivers mo-

ments for different hadrons (π+, π−, K+, and K−-mesons) using a polarized 3He target

as an effective neutron target. This is the very first measurement of Collins and Sivers

moments on a neutron target. Previous measurements by the HERMES and COMPASS

collaborations were performed on proton and deuterium targets and are discussed at the

beginning of this thesis. In this chapter, the preliminary results of the single target spin

asymmetry in the semi-inclusive deep inelastic process 3He↑(e, e′π−)X will be presented.

The Collins and the Sivers moments on 3He for π−-mesons are extracted. The correspond-

ing results for the neutron are presented as the final goal of this work after applying nuclear

corrections. The inclusive asymmetries measured in the LHRS as well as in the BigBite

spectrometer for all the detected particles (except for the electrons in case of the BigBite

spectrometer) will be discussed in addition to the coincidence asymmetry results.

6.1 The Analysis Flow

The main objective of experiment E06010 was to measure the single target spin asymmetries

of pions and kaons on a polarized 3He target and extract the Collins and Sivers moments

from the measured asymmetries. The schematic of the analysis flow from the raw data

collected during the experiment to the final determination of the physics asymmetries is

shown in the Fig. 6.1.

More than 10 Tb of raw data were stored on disk during the experiment. An extensive

online monitoring of the data quality was performed during the process of data taking.

The initial stage of the offline analysis involved calibrations of various detectors in order to

make the particle identification process as well as the determination of the acceptance of

the detectors efficient for the following physics analysis. Once all the detector calibrations

were accomplished and the particle identification cuts were determined, the stability of the

detectors was examined. This was done for each of the detectors and checked for each

production run. Beam trips during a single run were removed in order to avoid any false

asymmetries. All the problematic periods (any run which indicated problems) during the

experiment were identified during the process of data stability check. The data stability

check was an iterative process and was done several times. The data were replayed four
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Figure 6.1: The analysis flow of the data in experiment E06010.

times during the stability check and correction process. The raw asymmetries were formed

using two different methods1 :

• Forming the ratio of the difference of the normalized yields2 between the two target

spin states over the corresponding sum for each run. At the end the average over all

the runs was taken.

• Forming local pairs/super local pairs (discussed in the following section) after dividing

the data into smaller periods and determining one asymmetry for each period to reduce
1The asymmetries were formed by flipping the 3He spins by 180◦ every 20 minutes during the data

taking process. The flipping of the spins was done by sending an RF signal to the target (NMR discussed
in chapter 4).

2The number of events detected after applying all the detector PID and kinematic cuts was corrected for
the charge and livetime.
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any systematic uncertainty and at the same time to incorporate reasonable statistics

for the coincidence events. The asymmetries corresponding to different periods were

then combined. In practice, in the local pair method, all the individual runs were

combined and the data were divided into different periods depending on different

experimental conditions experienced during the data taking. Then the data were

further divided into two spin states in each period in order to form the asymmetry for

that period. This method was implemented by X. Qian and is discussed in Ref. [18].

In addition to the primary semi-inclusive coincidence channel (e, e′π−) presented in this

thesis, there were several inclusive asymmetry measurements analyzed corresponding to the

channels listed below:

• (e,π−) using the LHRS (single: T3 trigger)

• (e,π+) using the LHRS (single: T3 trigger)

• (e,e′) using the LHRS (single: T3 trigger)

• (e,p) using the LHRS (single: T3 trigger)

• (e,π−) using the BigBite spectrometer (single: T1 trigger)

• (e,e′) using the BigBite spectrometer (single: T1 trigger)

• (e,γ) using the BigBite spectrometer (single: T1 trigger)

The (local pair) method was implemented in the final analysis for all the channels while the

first method was used to cross check the results. Both methods are consistent with each

other. The physics asymmetry was calculated by correcting the measured raw asymmetry

for the target polarization (Pt) and the N2 dilution factor (ηN2). The beam polarization was

irrelevant in the case of single target spin asymmetries and hence was not included in the

corrections. The Collins and Sivers moments were extracted by fitting the 3He asymmetry

with the Collins and Sivers terms modulated by a sine function. The argument of the sine

function contains the azimuthal angle of the target spin (φS) and the hadron plane angle

(φh) with respect to the electron scattering plane. The detailed procedure of the extraction

methods will be discussed in the follwoing sections. The Collins and Sivers moments for

the neutron are finally extracted from the 3He results by applying nuclear corrections as

discussed in section 6.11.
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6.2 Asymmetry Formalism

The raw asymmetry is defined as :

Araw =
N+

Q+L+ − N−

Q−L−

N+

Q+L+ − N−

Q−L−

, (6.1)

where N+/− is the total number of events in spin state + (−)3, Q+/− is the respective

charge and L+/− represents the electronics livetime correction. If we assume that the

livetime corrections are not statistically correlated with the number of events, then the

uncertainty in the asymmetry can be expressed as

δA =
2Y +Y −

(Y + + Y −)2

√
1
N+

+
1
N−

, (6.2)

where Y (+/−) = N(+/−)

Q(+/−)L(+/−) is the yield in the respective spin state.

If the target polarization Pt and the dilution factor ηN2 are applied to correct the raw

asymmetry, one can simply insert these terms to the above expressions for the asymmetry

and the error in the asymmetry in order to calculate the respective physics quantities :

Aphy =
1

Pt · ηN2

N+

Q+L+ − N−

Q−L−

N+

Q+L+ − N−

Q−L−

, δA =
1

Pt · ηN2

2Y +Y −

(Y + + Y −)2

√
1
N+

+
1
N−

. (6.3)

6.3 Asymmetry : Local Pair Method/Super Local Pair Method

The motivation for forming the local pairs was to identify the existence of any temporal ex-

perimental problem which might be hidden and left unnoticed during the analysis process.

In addition, the spectrometer yields in our experiment drifted with time due to the degra-

dation of the shower blocks in the BigBite spectrometer. This might lead to the leakage

of other false asymmetries into the real asymmetries over a long period of time. The for-

mation of local pair minimizes this problem and it helps to reduce any possible systematic

uncertainties. However, the local pair method has a couple of disadvantages :

• The determination of the uncertainty (Eq.(6.2)) would not be valid if the number of

events in any of the two spin states (+ or −) is zero.
3In E06010, the spin state + (−) corresponds to the 3He spin aligned vertically up (down) or to the left

(right) with respect to the scattering plane containing the incoming beam.
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• If the charge asymmetry between the + and the − state is large, the formation of

local pair would make the statistical precision significantly worse.

The first disadvantage can be overcome by adopting the following formalism to combine the

data [18]:

A =
∑

i(
1
P i

)ai · (Y i+ − Y i−)∑
i a
i · (Y i+ + Y i−)

, (6.4)

where the summation is over all the periods, P i is the target polarization corrected for

dilution effects and ai is determined by the following condition:

∂δA

∂ai
= 0. (6.5)

As it is extremely difficult to solve the above set of equations, the following approximation

was implemented [18]:

A =
∑

i(
1
P i

)ai · (Y i+ − Y i−)∑
i a
i · (Y i+ + Y i−)

=
∑

iA
iai · (Y i+ + Y i−)∑

i a
i · (Y i+ + Y i−)

≈
∑

i b
iAi∑
i b
i

(6.6)

The best bi and the best ai can be expressed as :

bi ∼ 1
(δAi)2

∼ 1
1
N+ + 1

N−
∼ 1

1
Y +L+ + 1

Y +L+

(6.7)

ai =
bi

Y i+ + Y i− . (6.8)

The problem with large charge asymmetries in the local pairs can be reduced by the for-

mation of super local pairs where each target spin state of the original local pair is further

divided into two states. Figure 6.2 shows a comparison of the charge asymmetries for the

two methods.

The super local pair method increases the number of local pairs originally formed almost

by a factor of 2 and reduces the width of the charge asymmetry. Thus, it helps reducing the

systematic uncertainties significantly. In the final analysis of extracting the asymmetries in

E06010, the super local pair method has been utilized.

6.4 Detector PID Cuts, Acceptance and Kinematic (SIDIS) Cuts

The various detector cuts applied in the asymmetry analysis to detect the hadrons in the

LHRS and electrons in the BigBite spectrometer are summarized below:
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Figure 6.2: The charge asymmetry comparison between the local pair method (left) and the
super local pair method (right) [18].

Detector PID cuts :

• LHRS : Gas C̆erenkov ADC sum < 250 to identify π− and K− mesons.

• LHRS : Lead glass counter E
P < 0.06 to identify π− mesons.

• LHRS : Aerogel C̆erenkov ADC sum > 150 to identify π− mesons.

• BigBite : Preshower energy ADC sum > 400 and preshower/shower E
p > 0.80 and <

1.2 to identify the electrons.

• Coincidence cuts : coincidence timing cut ±3 ns on the (e, e′π−) spectrum using the

T5 trigger only.

In addition to these PID cuts on the detectors, several other cuts such as one track event

cut on the LHRS, track matching cut on the preshower and shower detectors in the BigBite

spectrometer, the cut for negatively charged particle in the optics reconstruction, etc. were

also implemented which are discussed in chapter 5. The LHRS acceptance cut (R-cut)

was applied as well in the analysis and is discussed in Appendix D. Only events within

the boundary defined by the R-cut in the LHRS (realized by the cut “accep==1 ” in the
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analyzer) were chosen for the asymmetry analysis.

Semi-Inclusive DIS cuts/Kinematic settings4:

• Q2 >1 GeV2 (Fig. 6.3).

Figure 6.3: Q2 distribution for each x-bin. The violet line shows the cut Q2 > 1 GeV2.

• Invariant mass W> 2 GeV to avoid the nuclear resonance region (Fig. 6.4).

Figure 6.4: The invariant mass spectrum for each x-bin. The violet line shows the cut W> 2
GeV.
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• Invariant mass of the pion W′ > 1.5 GeV to avoid the nuclear resonance region

(Fig. 6.5).

Figure 6.5: The invariant mass spectrum of the pions for each x-bin. The violet line shows
the cut W′ > 1.5 GeV.

• 0.3<z<0.7 (Fig. 6.6).

Figure 6.6: To ensure the current fragmentation region, a cut 0.3<z<0.7 is chosen. z is
shown for four different x-bins.

6.5 Phase Space and Angular Coverage

The phase space and the angular coverage for the SIDIS reaction n↑(e, e′π−)X are shown

in Fig. 6.7 and Fig. 6.8, respectively.
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Figure 6.7: The phase space for the reaction n↑(e, e′π−)X in E06010. The plots are gener-
ated after applying all the relevant cuts used in the analysis [18].

6.6 Inclusive Asymmetries in the LHRS

The single spin target asymmetries for the inclusive DIS processes can be defined as:

Avert =
Y ↑ − Y ↓

Y ↑ + Y ↓
, Atran =

Y→ − Y←

Y→ + Y←
. (6.9)

Here, Avert (Atran) is the asymmetry in the vertical (transverse) target spin configuration.

Y ↑ (Y ↓) is the yield normalized by the charge and livetime when the target spins are

vertically up (down). Similarly, Y→ (Y←) is the yield normalized by the charge and livetime

when the target spins are aligned to the right (left) in the horizontal plane with respect to

the incoming beam.

The measured asymmetries in the LHRS involved the single asymmetries for (e, e′),

(e, π−), (e, π+), and (e, p) on the polarized 3He target. These were inclusive measurements

with the T3 trigger only and data were taken in both the vertical and transverse 3He

polarization configurations. Fig. 6.9 and Fig. 6.10 show the 3He asymmetries measured in

vertical and transverse polarization directions, respectively. The asymmetries are corrected

for the polarization but no N2 dilution factor has been taken into account.

As can be seen from the plots, there is clearly a non-zero asymmetry for each of the
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Figure 6.8: The angular coverage of the target spin angle (φS) and the outgoing hadron
plane angle (φh) with respect to the scattering plane. The coverages for all the x-bins are
shown [18].

identified particles in the vertical configuration while the asymmetries in the transverse

target configuration are consistent with zero. This can be interpreted from Fig. 6.11 where

both configurations are compared. In any inclusive reaction, there are three basic vectors:

the momentum of the incoming particle (~k1), the momentum of the outgoing particle that

is observed (~k2), and the target spin (~ST ). One can form only one independent scalar

(~k1×~k2)· ~ST out of these three vectors. Now, in the case when the target spin is transversely

polarized in plane (Fig. 6.11, left), the asymmetry is found to be small (may be even zero).

On the other hand, when the target is vertically polarized (Fig. 6.11, right), the resultant

scalar is different from zero and in fact, the asymmetry in this case is clearly non-zero.

The inclusive asymmetry in the case of vertical 3He polarization for π+-mesons is positive

while the asymmetry for π−-mesons is negative. The sign of these hadron asymmetries can

be compared to the results from experiment E704 at Fermilab [20]. E704 measured the

analyzing power in inclusive π+ and π− production at high xF (Feynman x) with a 200

GeV polarized proton beam. Figure 6.12 shows the dependence of the analyzing power AN

on xF where AN is defined as follows:
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Figure 6.9: The single spin asymmetries measured in the LHRS for all the particles detected
in the vertical 3He polarization configuration. The particles include electrons, pions, and
protons.

AN = − 1
PB cosφ

N↑(φ)−N↓(φ)
N↑(φ)−N↓(φ)

, (6.10)

φ is the azimuthal angle between the beam polarization direction and the normal to the π±

meson production plane. N↑(↓) is the number of pions produced for the beam polarization

tagged as positive (negative) normalized to the beam flux. PB represents the polarization

of the beam. The negative sign in front of the equation is due to the fact that the hadrons

were detected to the right side of the incoming beam. xF is the Feynman x and is defined

as:

xF =
PL

PL(max)
=

2PL√
s
, (6.11)

where PL is the longitudinal momentum of the particle and
√
s is the center of mass energy.

The plot shows that AN increases from 0 to 0.42 with increasing xF for the π+-mesons

and decreases from 0 to −0.38 with increasing xF for the π−-meson data. The kinematic
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Figure 6.10: The single spin asymmetry measured in the LHRS for all the particles detected
in the transverse 3He polarization configuration. The particles include electrons, pions, and
protons.

Figure 6.11: The formation of a scalar in case of inclusive reactions for both transverse
(left) and vertical (right) target polarization configurations. ~k1, ~k2, and ~ST are defined in
the text.

range covered was 0.2 ≤ xF ≤ 0.9 and 0.2 ≤ pT ≤ 2.0 GeV/c. In our case, xF= 0.39

and our hadron (also electron in this case) detection was to the left side of the incoming

beam. Moreover, unlike E704, in our case, the target was polarized and the asymmetry was

defined with respect to the target spin direction and not to the incoming electron beam

helicity. Hence, applying the appropriate corrections as compared to the E704 data, the

sign of our asymmetries for the π+-mesons and the π−-mesons are consistent. The inclusive

asymmetries measured for all the hadrons and the electrons in the LHRS in the vertical
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Figure 6.12: AN for π+, π−, and π0 mesons as a function of xF . The figure is reproduced
from [20].

3He target configuration are summarized in Table 6.1.

Table 6.1: Inclusive single spin asymmetries in the LHRS for the vertical target polarization.
The asymmetries are corrected for polarization. No correction has been applied for the N2

dilution.

Particle Aphy ± stat.
e− −0.0016±0.0008
π− −0.0091±0.0004
π+ 0.0150±0.0006
p 0.0068±0.0006

In the case of the transverse 3He target polarization (in plane), the inclusive electron

and pion asymmetries are consistent with zero while the proton asymmetries show a slightly

positive non-zero single spin asymmetry at a 2 σ level. The results are listed in Table 6.2.
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Table 6.2: Inclusive single spin asymmetries in the LHRS for the transverse target polariza-
tion. The asymmetries are corrected for 3He polarization. No correction has been applied
for the N2 dilution.

Particle Aphy ± stat.
e− −0.0002±0.0007
π− −0.00005±0.0004
π+ 0.0002±0.0006
p 0.0010±0.0007

6.7 Inclusive Asymmetries in the BigBite Spectrometer

The inclusive DIS asymmetries observed in the BigBite spectrometer for negative and posi-

tive hadrons are shown in Fig. 6.13 and Fig. 6.14. Inclusive electron asymmetries were also

measured and are discussed in J. Katich’s thesis [123]. In the BigBite spectrometer, pions

and kaons were not identified and hence they are generally labeled as negative or positive

hadrons.

Figure 6.13: Single target spin asymmetries for the negatively charged hadrons in the
BigBite spectrometer in the four momentum bins. The asymmetries are corrected for target
polarization. However, no N2 dilution factor has been taken into account. The red points
correspond to the events with the T6 trigger and the black points correspond to the events
with the T1 trigger.

The definition of the asymmetry in this case is the same as in case of the LHRS. How-

ever, the BigBite spectrometer was on the right side of the beam opposite to the LHRS.
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Figure 6.14: Single target spin asymmetries for the positively charged hadrons in the Big-
Bite spectrometer in the four momentum bins. The asymmetries are corrected for target
polarization. However, no N2 dilution factor has been taken into account. The red points
correspond to the events with the T6 trigger and the black points correspond to the events
with the T1 trigger.

Hence, opposite signs of the asymmetries are expected for this spectrometer. Indeed, the

asymmetry observed in the vertical configuration for negatively charged hadrons is positive

in the BigBite spectrometer which is consistent with the observed negative asymmetry for

π− mesons in the LHRS. Similarly, the asymmetry for positive hadron is negative which

is also as expected. However, unlike the LHRS, the asymmetries in the transverse target

polarization configuration for both positive and negative hadrons are different from zero

which can be attributed to the fact that the acceptance of the BigBite spectrometer is not

symmetric. The difference between the T1 and T6 triggers is the threshold which was set

at a higher value for the T6 trigger as compared to the T1 trigger.

6.8 Coincidence Single Spin Asymmetry

The single target spin asymmetries (SSA) in π− electro-production via the semi inclusive

deep inelastic reaction 3He↑(e, e′π−)X are given by:

Araw =
Y + − Y −

Y + + Y −
. (6.12)
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Here Y + (Y −) is the yield of the negative pions coincident with the electrons normalized by

the charge and livetime when the 3He spins are aligned vertically up (down) or to the left

(right) of the incoming electron beam in the horizontal plane. The SSA on 3He for different

momentum bins in the BigBite spectrometer are shown in Fig. 6.15.

Figure 6.15: Single target spin asymmetries for π−-mesons in the SIDIS 3He↑(e, e′π−)X
reaction for different momentum bins in the BigBite spectrometer. The asymmetries are
corrected for 3He polarization, but not for N2 dilution.

The asymmetries for different momentum bins shown in Fig. 6.15 are corrected for 3He

polarization but no dilution factor for N2 has been applied. As mentioned in chapter 5, the

major contaminations to the BigBite coincidence electrons are photon induced electrons and

negative pions. Hence, as a part of the background contamination study, the coincidence

asymmetries for 3He↑(e, π−π−)X and 3He↑(e, γπ−)X reactions are also extracted as shown

in Fig. 6.16 and Fig. 6.17, respectively.

6.8.1 Extraction of Collins and Sivers Moments for π− Mesons

Three different methods are employed in order to extract the Collins and Sivers moments

from the measured 3He asymmetries. The measured asymmetries are fitted with the fol-

lowing function :

AUT = AC sin(φh + φS) +AS sin(φh − φS) +AP sin(3φh − φS), (6.13)
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Figure 6.16: The single target spin asymmetries for the SIDIS 3He↑(e, π−π−)X reaction
for different momentum bins in the BigBite spectrometer. The asymmetries are corrected
for 3He polarization, but not for N2 dilution.

Figure 6.17: The single target spin asymmetries for the SIDIS 3He↑(e, γπ−)X reaction
for different momentum bins in the BigBite spectrometer. Only the correction for 3He
polarization has been applied. N2 dilution factor has not been taken into account.

where AUT is the measured 3He asymmetry with an unpolarized (U) electron beam and

a transversely (T ) polarized target. AC , AS , and AP are the fitted parameters which

are identified as the Collins, Sivers, and Pretzelocity moments, respectively. φh is the

angle between the plane containing the produced hadron (hadron plane) and the electron
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scattering plane and φS is the angle of the target spins with respect to the electron scattering

plane. The three methods are described as follows.

Figure 6.18: The Collins and Sivers moments extracted from different fitting methods of
the angular dependences of 3He raw asymmetries.

The methods are described as follows :

• One-dimensional fitting method : In this method, the data were binned in

(φh + φS) (Collins angle) and (φh − φS) (Sivers angle). The raw asymmetries were

determined for each angular bin. The dependences were then fitted with a simple

sine function. For the Collins asymmetry, the angular dependence was fitted with a

function of the form AC sin(φh + φS) while for the Sivers asymmetry, the functional

form AC sin(φh − φS) was used. The coefficients (results of the fit) AC and As give

the Collins and Sivers moments, respectively. In Fig. 6.18, the symbols corresponding

to “1d Fit” are the results obtained by this method.

• Two-dimensional fitting method : This method is similar to the one-dimensional

fit method in the sense that a simple fitting function was implemented in this case

as well. The data were binned in φh and φS and then the angular dependences were

fitted with only two terms in the above fitting function. Hence, in this two dimensional

fitting method, the data were fitted with the function AC sin(φh+φS)+AS sin(φh−φS).

Both the Collins and Sivers moments were extracted simultaneously in this case. The

results corresponding to “C+S 2d Fit” are attributed to this method (see Fig. 6.18).
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• MINUIT5 minimization: This analysis code was developed by X. Qian based on

“Minuit 2” (details can be found in [18]) and it uses a χ2 minimization procedure. In

Fig. 6.18, all the results from the “Minuit Fit” correspond to this procedure of fitting.

Functional forms such as As sin(φh−φS) (S), Ac sin(φh+φS)+AS sin(φh−φS) (C+S),

and Ac sin(φh + φS) + AS sin(φh − φS) + AP sin(3φh − φS) (C+S+P) were used to

compare the resultant moments in each case.

The methods summarized above are consistent within the statistical uncertainties as can

be seen from Fig. 6.18. Especially, the agreement between the Minuit minimization results

and the simple fitting results (blue and green points, red and magenta points) indicates the

reliability of the analysis process. However, it turns out that the statistical uncertainties of

the moments increase with the inclusion of more terms in the fitting function. It is evident

from the results that when all the three terms (Collins, Sivers, and Pretzelocity) are taken

into account , the statistical error bars increase as compared to the results when fewer terms

are included. This is attributed to the fact that the angular coverages of φh and φS are not

complete due the experimental limitations. Hence, the statistical uncertainties depend on

the number of the terms included in the fits of the angular distributions. In the ideal case,

when the φh and φS have full coverages, the statistical uncertainties are independent of the

number of terms modulated by the angles themselves.

Results for π− mesons on 3He

The results of the Collins and Sivers moments as a function of x for 3He are presented

in Fig. 6.19. The error bar associated with each point in each x bin represents the statisti-

cal uncertainty. The systematic uncertainties are presented as a blue band at the bottom

of the plot. The systematic uncertainties in the measurement will be discussed in the next

section. The theoretical prediction done by Anselmino et al. is plotted as a purple line for

each of the extracted moments [21].

Observation :

It is evident from the Fig. 6.19 that both the Collins and Sivers moments for π−-mesons in

all the x bins are consistent with zero within the experimental uncertainties. The Collins

moments agree with the theoretical predictions within experimental uncertainties as shown.
5MINUIT is a software used for fitting purposes and it is available in the ROOT analysis software package.
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Figure 6.19: The Collins and Sivers moments for π− mesons extracted from the 3He asym-
metries for different x bins. The error bars show the statistical uncertainties. The blue
band represents the systematic uncertainties. The theoretical prediction from Anselmino et
al. is shown by the purple line [21]. The dashed line is drawn to show zero. The results are
prior to any radiative corrections (Preliminary).

However, the Sivers moments show a slight tendency to be positive while the theoretical

prediction favors negative values.

6.9 Systematic Uncertainties

The various systematic uncertainties involved in the extraction of the Collins and Sivers

moments of 3He for π− mesons from the E06010 data are summarized in this section. The

details are presented in [18].

• Contamination effect : The largest contamination to the coincidence electrons in

the BigBite spectrometer were photon-induced electrons and negative pions. On the

other hand, the contamination in detecting coincidence π− mesons in the LHRS was

mainly due to K− mesons. The electrons in the LHRS were rejected very efficiently

by the Gas C̆erenkov and the lead glass counters and hence the contamination was

negligible (discussed in chapter 5).

In the BitBite spectrometer, the reaction channels 3He↑(e, π−π−)X and 3He↑(e, γπ−)X

could lead to false asymmetries which might contribute to the measured 3He↑(e, e′π−)X
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asymmetry. The systematic effect of these false asymmetries can be analyzed by treat-

ing the π− mesons and the positrons (they follow the same kinematics as the γ-induced

electrons as discussed in chapter 5) in the BigBite spectrometer like normal coinci-

dence electrons and determining the Collins and Sivers moments for those. Then the

central values of these moments of 3He↑(e, π−π−)X and 3He↑(e, γπ−)X processes

were compared to the central values of the real 3He↑(e, e′π−)X process. The differ-

ence between the central values of the moments between the false processes and the

real process is treated as a systematic uncertainty after proper weights had been ap-

plied due to the respective contaminations. The effect of the false asymmetry due the

π− meson contamination to the coincidence electrons in the BigBite spectrometer is ∼

0.1-2.5% of the statistical uncertainties while the effects of the γ-induced electrons are

about 32%, 19%, 6%, and 6% for the four x bins. In case of the LHRS, the K− meson

contamination to π− mesons is ∼ 0.3% with a π−:K− rejection ratio better than 10:1

by using the Aerogel detectors. The analysis of the Collins and Sivers moments for

K− meson can be found in [18]. The effect of the K− contamination is less than 4%

of the statistical uncertainties for each x bin.

• BigBite calorimeter gain drop (Yield drift): During the period of data taking,

the preshower blocks in the BigBite spectrometer experienced continuous radiation

damage. As a consequence, the yield measured in the spectrometer drifted with time

during the experiment. However, there could also be other experimental factors such

as target density, LHRS polarity change, etc., that might lead to a drift in the yield.

The preshower gain drop was corrected in the offline analysis and checked several times

for its stability. The super local pair method, as discussed earlier corrected the yield

drift while forming the asymmetries. The data were divided into different sections and

the yield in each section could be fitted with a first order polynomial. In practice, the

yield in each spin state in the super local pair method was fitted. Thus, a correction

could be implemented for different periods if needed. The details are presented in [18].

A drift in the yield can cause a change in the central values of the Collins and Sivers

moments. However, this change was determined to be ∼ 11%, 2%, 2%, and 2% of the

statistical uncertainties for the four x-bins, respectively.

• Target polarization : 5% relative to the central value of the measured asymmetries.
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• Target density : The target density fluctuations due to the fluctuation in the target

temperatures were corrected. This effect is ∼2.1% of the statistical uncertainties.

• N2 dilution : The systematic uncertainty is ∼0.3-0.6% with respect to the central

value of the asymmetries. The N2 dilution analysis is discussed in chapter 5.

• Livetime Correction : The livetime correction to the data yielded 1.5% of the

statistical uncertainties.

• Tracking: LHRS single track cut leads to 1.5% of the statistical uncertainties while

the BigBite spectrometer tracking quality cut also leads to 1.5% of the statistical

uncertainties.

Radiative corrections are not included in the analysis and hence the results presented in this

thesis are not corrected for radiation effects. However, in our kinematics which is comparable

to HERMES, the radiative corrections are expected to be small (less than 10% [124]). In

addition, the diffractive vector meson production has also not been taken into account as

a correction. The simulation for the experiment is being developed and the rest of the

corrections will soon be estimated before the first publication. Table 6.3 summarizes all the

systematic uncertainties that have been taken into account in the analysis.

Table 6.3: The systematic uncertainties in E06010 for the SIDIS process 3He↑(e, e′π−)X.
Type A represents the systematic uncertainty with respect to the central value of the asym-
metry. The type B represents the systematic uncertainty as percentage of the statistical
uncertainty in the asymmetry.

Sources of error Systematic Uncertainty Uncertainty type
3He target polarization 5% A
3He target density 2.1% B
N2 dilution 0.3%→0.6% A
K− contamination in LHRS 4% B
γ-induced e− cont. in BigBite 32%, 19%, 6%, 6% B
π− contamination in BigBite 0.1%→2.5% B
LHRS single track cut 1.5% B
BigBite tracking quality cut 1.5% B
Livetime correction 1.5% B
Yield drift 11%, 2%, 2%, 2% B

Two additional systematic uncertainties which were identified due to the applied vertex

cut and the bin centering corrections are not discussed here and can be found in [18]. Both
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of them are less than 20% of the statistical uncertainties. In addition to these experimen-

tal systematic uncertainties discussed above, the contributions from the terms besides the

Collins and Sivers to the measured asymmetries can be treated as systematic uncertainties

in the fitting procedure (see Appendix G). The final results include all of these systematic

uncertainites.

6.10 Nuclear Correction

The experimentally determined 3He asymmetry (A3He) can be approximated by the follow-

ing expression derived in Ref. [26].

A ~3He
≈ fnPnA~n + 2fpPpA~p, (6.14)

where fn(p) is the neutron (proton) dilution factor. In this formalism of defining a 3He

asymmetry, different nuclear effects such as Fermi motion and binding effects are taken care

of by introducing the effective polarization of neutrons (Pn) and protons (Pp) in 3He. The

expression holds for both the Collins and the Sivers asymmetries. The vector sign indicates

the polarization associated with the asymmetries, i.e., the asymmetries are determined with

polarized 3He and hence, polarized nucleons. The neutron asymmetry can be extracted from

the measured 3He asymmetry by inserting the dilution factors and the effective polarizations

of the neutrons and the protons into the asymmetry expression :

A~n ≈ [A ~3He
− 2fpPpA~p]

1
fnPn

. (6.15)

Here we used a model prediction for A~p which will be discussed in the next subsection.

6.10.1 Effective Nucleon Polarization in 3He

The effective neutron (proton) polarization Pn (Pp) is defined by the model calculation

described in Ref. [125] as follows :

Pn = P+
n − P−n = 1− 2∆, (6.16)

Pp = P+
p − P−p = −2∆′. (6.17)

Here, P+(−)
n is the probability of finding a neutron with spin parallel (anti-parallel) to the

spin of the 3He nucleus. Similar definitions hold for the proton. The 3He-neutron and
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3He-proton density matrices ∆ and ∆′ are defined as :

∆ =
1
3

[P (S′) + 2P (D)], (6.18)

∆′ =
1
6

[P (D)− P (S′)], (6.19)

where P (S′) and P (D) are the probabilities of the S′ and D states of 3He, respectively.

These are evaluated by fitting the results of various model calculations as a function of

the 3He binding energy as discussed in Ref. [125]. The fitting results yielded the following

values for a 3He binding energy of 7.72 MeV :

∆ ≈ 0.071± 0.01, ∆′ ≈ 0.0142± 0.002. (6.20)

Therefore, the effective nucleon polarizations are :

Pn = 0.86+0.036
−0.02 , Pp = −0.028+0.009

−0.004. (6.21)

If the polarized 3He nucleus were a perfect effective neutron, then Pn=1 and Pp=0 with all

the nucleons are in S state.

The dilution factors can be expressed as [26]:

fn(p)(x, z) =

∑
q e

2
qf

q,n(p)
1 (x)Dq,h

1 (z)∑
n,p

∑
q e

2
qf

q,(n,p)
1 (x)Dq,h

1 (z)
, (6.22)

where the numerator contains the unpolarized parton distribution, f1, for the nucleon as-

sociated with the unpolarized fragmentation function, D1, summed over all the quark and

antiquark flavors. The denominator contains the same quantities as the numerator but

additionally summed over the nucleons. eq represents the charge of the quark with flavor

q and h is the outgoing hadron. The parametrizations used in the different terms (parton

distribution and fragmentation function) in this x - z separation are explained in [26]. The

neutron dilution factors fn for π−-mesons were extracted for each x-bin and are shown in

Fig. 6.20. The proton dilution factors fp can be directly calculated by using fp = 1− fn.

The numerical values of the neutron dilution factors fn are also listed in Table 6.4:

In order to extract the neutron asymmetry A~n from Eq.(6.15), a correction for the

proton asymmetry, A~p, has to be applied. We used the results of Anselmino et al. [21] to

correct for A~p. Fig. 6.21 shows the predictions of Collins and Sivers moments for the proton

and the neutron from Anselmono et al. for the production of π− mesons.
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Figure 6.20: The neutron dilution factors from model calculations for all the four x bins in
π− meson production.

Table 6.4: The values of the neutron dilution factors used in the extraction of the neutron
asymmetries from the measured 3He asymmetries.

x-bin Neutron dilution factor (fn) Uncertainty
0.1128 0.2775 0.042
0.1898 0.2712 0.040
0.2514 0.2632 0.039
0.3922 0.2561 0.038

6.11 The Collins and Sivers Moments for π− Mesons On the Neutron

The Collins and Sivers moments on the neutron were extracted from the results on 3He by

applying nuclear corrections. The results of the Collins and Sivers moments on the neutron

for π− production are shown in Fig. 6.22. The theoretical predictions from different groups

are listed below :

• The purple curves in both plots are predictions by Anselmino et al.. The prediction

for the Collins moments is based on a global analysis of the HERMES, COMPASS

and Belle data [6], [7], [126]. In this calculation, the behavior of the unpolarized

distribution function and the unpolarized fragmentation function are assumed to be
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Figure 6.21: The Collins and Sivers moments for π−-mesons produced off neutrons and
protons as predicted by Anselmino et al. [21].

of Gaussian form in the transverse momenta of the initial quark and the final hadron,

respectively. The prediction for the Sivers moment is based on the HERMES data.

The details of the parametrization can be found in Ref. [21] and [46].

• The black curve for the Collins moment is a prediction by Ma et al. based on the sum

rules of nucleon tensor charges [23] and [24].

• The green curve for the Collins moment is a calculation done by Pasquini. Here,

the calculations are based on the light-cone constituent quark model (CQM) [127].

The transverse momenta of the quarks were assumed to be of Gaussian form in both

distribution and fragmentation functions [22], [128].

The error bars associated with each point in Fig. 6.22 are statistical only. The systematic

uncertainties are represented by the blue band at the bottom of each plot.

Observations :

All the extracted moments are consistent with zero within the experimental uncertainties.

The extracted Collins moments agree well with all the theoretical predictions. The Sivers

moments show a slight tendency to favor positive values (zero within error bars) while the

theoretical prediction clearly shows a negative trend. The final results are summarized in

Table 6.5 with the statistical and all the systematic uncertainties.
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Figure 6.22: The neutron Collins and Sivers moments for π− meson production as a function
of x. The statistical uncertainties are shown as the error bars associated with the points.
The blue band represents the experimental systematic uncertainties. Different theoretical
predictions are shown for comparison. The purple curve shows the prediction by Anselmino
et al. [21], the green curve shows the prediction by Pasquini, [22], and the black curve is
from Ma et al. [23], [24]. The dashed line shows indicates zero. The results are prior to any
radiative corrections (Preliminary).

Table 6.5: The results of the Collins (AC) and Sivers moments (AS) on the neutron for four
x bins. The statistical and the total systematic uncertainties are represented by σstat and
σsys, respectively.

x-bin AC ± σstat ± σsys AS ± σstat ± σsys
0.1128 −0.129± 0.078± 0.044 −0.057± 0.077± 0.053
0.1898 0.014± 0.073± 0.044 0.044± 0.072± 0.061
0.2514 0.039± 0.068± 0.045 0.061± 0.066± 0.065
0.3922 0.004± 0.063± 0.039 0.059± 0.062± 0.042

Copyright c© Chiranjib Dutta 2010
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CHAPTER 7: SUMMARY AND OUTLOOK

E06010 acquired data in Hall A at Jefferson Lab for almost three months starting from

the second week of November 2008 to the first week of February 2009 with a polarized 3He

target and a continuous electron beam with an energy of 5.9 GeV. This was the first exper-

iment that measured single target spin asymmetries in the electro-production of pions and

kaons in the deep inelastic region using a transversely polarized 3He target as an effective

neutron target. Two previous measurements at HERMES with a transversely polarized

hydrogen target and at COMPASS with transversely polarized deuterium and NH3 (pro-

ton) targets already published results on single spin asymmetries and extracted the Collins

and Sivers moments for the proton and the deuteron as discussed in chapter 2. Here, the

Collins and Sivers moments have been extracted from the measured 3He asymmetries and

preliminary results on the neutron are presented for the first time after implementing the

nuclear corrections to the 3He results. The extracted moments are extremely important

in order to access information about the transverse momentum dependent distribution and

fragmentation functions as these are convoluted with each other and cannot be measured

explicitly in experiments. Hence, the extraction of these moments experimentally is very

important as an initial step towards the determination of the distribution functions as well

as the fragmentation functions.

In the analysis, extensive care has been taken in the process of particle identification to

separate the π− mesons from the electrons and also from the K− mesons. The asymmetries

were calculated using a super local pair method in order to minimize any possible systematic

effects. The final Collins and Sivers moments have been extracted by fitting the measured

asymmetries with a functional form that contains the sine modulations of the Collins and

Sivers angles only as discussed in chapter 6. However, the systematic effects of the other

higher order terms in the fitting procedure have been studied and quoted as systematic un-

certainties. A comparison of the results on the neutron from this work with existing results

on the proton from the HERMES experiment reveals that while the Collins moments for

π− mesons are negative for the proton, they are consistent with zero for the neutron target

within experimental uncertainties. In the case of the Sivers moments, the HERMES data

on the proton show values comparable to zero for π− mesons. Our Sivers moments on the

neutron are consistent with zero as well. However, the results from the COMPASS collabo-
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ration on the deuteron target show that the Collins moments are consistent with zero while

the results on the proton target reveal a non-zero behavior for the charged unidentified

hadrons. The Sivers moments are also consistent with zero for both the deuteron and the

proton targets. However, the results from the COMPASS experiment correspond to a larger

range of x (including down to lower x) as compared to the range covered in E06010.

The results presented in this thesis are very important as this is the first independent

measurement on the neutron so far. The extracted Collins and the Sivers moments are

consistent with zero which is not only interesting but also very exciting when compared

to the existing results mentioned above. The results for the Collins moments are in good

agreement with the theoretical predictions while the Sivers moments show a slight deviation

from the prediction. A comparison of the observed Sivers moments in this experiment with

the existing HERMES results might lead to a näıve qualitative explanation which supports

the small gluon orbital momentum. The Sivers moments for the π+ mesons on a proton

target [6] have opposite sign as compared to the Sivers moments on a neutron target [18].

This can be interpreted with the similar behavior of the anomalous magnetic moments of

the proton and the neutron, and the Sivers single spin asymmetries discussed in Ref. [129].

Using the isospin symmetry, the Sivers single spin asymmetries for the π+ mesons on a

proton target should have an opposite sign as compared to the asymmetries on a neutron

target. This already explains the opposite signs for the HERMES data [6] and the E06010

data [18]. Similar explanation is valid for the case of the π− mesons. The formalism pre-

sented in Ref. [129] predicts a negative sign for the Sivers single spin asymmetries for π−

mesons on a proton target which implies that for a neutron target, the Sivers single spin

asymmetries should show a positive trend. However, as the magnitude of the asymmetries

are governed by the square of the quark charges, the effect in the case of the π− mesons are

suppressed as compared to the case of π+ mesons. This is because the fragmentation of π−

meson is favored by the d-quark which has a charge of -1/3 as compared to the charge (2/3)

of the u-quark. Now if the π− meson in the reaction is produced by a mechanism pertaining

to the gluon orbital angular momentum, the u-quark and d-quark single spin asymmetries

add constructively, for a gluon in a nucleon Fock state will produce uū or dd̄ pairs with

equal weight. However, this mechanism can be realized mostly in the region where z → 1.

This can also contribute in our x region which is between 0.13 and 0.41. Thus, our Sivers

single spin asymmetries for π− mesons which do not show any large deviation from zero
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but show a very tiny positive trend, might put a limit on the small contribution from the

gluons to the orbital angular momentum of the nucleon [130]. Our results of the Collins

and Sivers moments on neutron are of great importance as these can be used together with

the world data to extract the transversity distribution and Sivers distribution functions for

various quark flavors. This would not only extend the prevailing knowledge of the trans-

verse distribution of quarks in a nucleon but also provide useful information regarding the

contribution of angular momentum of quarks to the nucleon spin in the future.

Future

In addition to the existing experiments at HERMES, COMPASS, Belle, Jefferson Lab, and

RHIC (Relativistic Heavy Ion Collider at Brookhaven National Laboratory in Upton, USA),

the Hall A collaboration at Jefferson Lab proposed to carry out further precision measure-

ments of single spin asymmetries. Semi-inclusive electro-production of charged pions from

a transversely polarized 3He target in deep inelastic kinematics are planned using electron

beams with energies of 8.8 GeV and 11 GeV. These measurements with a newly proposed

solenoid spectrometer (soLID) will provide precise measurements of the Collins, Sivers, and

Pretzelocity asymmetries for the neutron with more control on the systematics as compared

to E06010 and a full 2π coverage of φS , and a large azimuthal angular coverage on φh. The

proposal has been accepted and the experiment is expected to take data in 2013. Another

measurement is the PAX experiment which will use the proposed high energy anti-proton

storage ring at GSI in Germany to access to the transversity distribution in the Drell-Yan

process. The Sivers distribution function can also be extracted from this proton-antiproton

scattering experiment. The knowledge of the transverse momentum dependent distribu-

tion functions as well as the fragmentation functions is in a very early stage. However, on

the theoretical front, extensive efforts have been made in order to understand the existing

data and provide predictions for future experiments. With the proposed measurements and

further analysis of the existing data, we expect to access more information about these

different distribution functions and hope to enrich the knowledge of the transverse degrees

of freedom of the quarks inside the nucleon.

Copyright c© Chiranjib Dutta 2010
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Appendix A: LIGHT-CONE COORDINATES

The light cone vector is defined as:

aµ = [a−, a+,~a⊥] =
[
a0 − a3

√
2

,
a0 + a3

√
2

, a1, a2

]
. (A.1)

The first two components correspond to the x− and x+ axes, respectively, as shown in

Fig. A.1.

Figure A.1: The light-cone coordinates.

The scalar product of two light-cone vectors can be expressed as:

a · b = a+b− + a−b+ − ~a⊥ ·~b⊥ (A.2)

In the light-cone coordinates, the four momentum of the nucleon and the virtual photon in

the limit (Q2 →∞, x constant) can be written as:

Pµ =
[
M2

2P+
, P+,~0

]
(A.3)

qµ =
[
Q2

2xP+
,−xP+,~0

]
(A.4)

The metric tensor:

The metric tensor used here is

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.5)
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where the indices run over 0,1,2,3. Repeated indices are summed.

Dirac matrices:

The Dirac matrices are expressed in terms of Pauli matrices in the chiral representation:

γ0 =
(

0 1

1 0

)
(A.6)

γi =
(

0 −σi
σi 0

)
(A.7)

γ5 =
(
1 0
0 1

)
(A.8)

with the Dirac structure :

σµν ≡ i

2
[γµ, γν ]. (A.9)

Levi-Civita Tensor :

In 3-D, the Levi-Civita tensor is defined as follows :

εijk =


+1 if(i, j, k) ≡ (1, 2, 3), (2, 3, 1), (3, 2, 1),
−1 if(i, j, k) ≡ (1, 2, 3), (2, 3, 1), (3, 2, 1),
0 if(i = j), (j = k), (k = i).

(A.10)

In other words, the tensor εijk is 1 if (i, j, k) are cyclic, −1 if (i, j, k) are anti-cyclic, and 0

if any of the indices gets repeated.
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Appendix B: OPTICAL THEOREM

The Optical theorem is a general law of wave scattering theory. It is a powerful theorem

which relates the forward scattering amplitude to the total cross section of the reaction.

This can be written as:

σt =
4π
q

Imf(0) (B.1)

where σt is the total cross section and Imf(0) is the imaginary part of the forward scattering

amplitude, i.e., θCM = 0. q represents the center-of-mass four-momentum. Here, the total

cross section term σt includes both the elastic and inelastic contributions. The derivation

of the optical theorem is based on the conservation of energy and on the conservation of

probability in quantum mechanics. It is widely used in scattering theory.

In the case of DIS, the optical theorem relates the cross section to the imaginary part

of the forward amplitude of the doubly virtual Compton process as shown in Fig. B.1.

Figure B.1: The optical theorem relates the cross section in DIS to the imaginary part of
the forward virtual Compton scattering [25].

If the forward Compton scattering amplitude is represented by A and the hadronic

tensor in the DIS process by Wµν , then

Wµν ∼ Im[Aµν ] (B.2)

where

Aµν = i

∫
dξ4eiq·ξ〈P, S|A(Jµ(ξ)Jν(0)|P, S〉. (B.3)
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A(Jµ(ξ)Jν(0)) is the time-ordered product. Since the structure functions correspond to the

matrix elements in QCD and the matrix elements in QCD can be related to the forward

Compton process, the optical theorem helps to express the leading twist quark distribution

functions q(x), ∆q(x), and δq(x) in terms of quark-nucleon forward amplitudes.
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Appendix C: RADIATION LENGTH

In this appendix, the radiation lengths and the thicknesses of different materials that the

incoming electrons and the scattered particles passed through during the experiment are

summarized. This information has been used in the Single Arm Monte Carlo (SAMC)

simulation to estimate the elastic 3He asymmetries in our kinematic settings. In addition,

these radiation lengths and thicknesses were used for the optics optimization of the LHRS

and the BigBite spectrometer.

Materials before scattering

• Exit Be window of the beam pipe : 0.0254 cm

• 4He inside the target enclosure : 22.86 cm

• 3He cell window (glass) : 0.01 cm

• 3He (Half of the cell length inside the cell : 19.9 cm

Materials after scattering:

• 3He inside the cell : 3.44 cm

If we assume that the reaction vertex is at the center of the cell, the effective thickness

of the 3He gas inside the cell that the outgoing particle has to travel through can be

expressed as:

h =
r

sin θ
(C.1)

where r is the radius of the cell. In our case, θ = 16◦ and r ≈ 0.95 cm. This is shown

in Fig. C.1.

• Glass (cell wall) : 0.399 cm

This is determined by using Eq.(C.1) where we used a value of 0.11cm for the glass

thickness (r).

• 4He inside the target enclosure : 79.05 cm
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Figure C.1: The incoming and outgoing electron after scattering. The scattering angle θ =
16◦.

• Yellow target enclosure G10 Glass Reinforced Epoxy : 0.0254 cm

• Air gap between the target enclosure and the LHRS entrance window : 51.23 cm

• LHRS Kapton entrance window : 0.0254 cm

The densities (ρ) and the radiation lengths (X0) of the materials are listed in Table C.1:

Table C.1: The radiation lengths of different materials. These were used in the MC studies
and other optics calibrations for the detectors.

Material before scattering X0 (cm) ρ ( gm
cm3 ) Thickness (cm) # of X0

Be 35.28 1.848 0.0254 0.000719
4He 528107.5 0.00166 22.86 0.0000433
Glass 7.038 2.76 0.01 0.00142
3He 43423 0.00125 19.9 0.000456∑

= 0.00263
Material after scattering
3He 43423 0.00125 3.44 0.0000792
Glass 7.038 2.76 0.399 0.0566922
4He 528107.5 0.00166 79.05 0.0001496
Air 30423 0.00121 51.23 0.0016839
Kapton 28.6 1.42 0.0254 0.0008881∑

= 0.05949
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Appendix D: ACCEPTANCE CUTS (R-CUT)

The LHRS acceptance cuts to select a good data sample of all the particles entering into the

spectrometer were determined by a method based on utilizing the R-function formalism.

This formalism allows to use equations of boundaries of a geometrical object to construct

functions that are equal to 0 on the boundary of the object and have different signs inside

and outside the object [88].

An R-function is a real valued function whose sign is completely determined by the signs of

its arguments. A simple example of an R-function is f(x, y) = 1− (x2 + y2) which can be

used to define a circle of radius 1. As mentioned above, the function f = 0 on the boundary

(i.e. radius = 1) and f > 0 inside and f < 0 outside the boundary. Thus, the R-function

behaves like a Boolean function and one can define different R-functions to incorporate

various complicated geometrical cuts at the same time. In case of LHRS in Hall A, the

acceptance of the spectrometer for a fixed beam position (x, y) depends on the following

target variables:

• in plane angle φtg

• out-of-plane angle θtg

• position of the reaction point ytg

• momentum fraction δtg

The LHRS acceptance is shown in Fig. D.1 on the next page where the 4-dimensional

acceptance can be realized through the distribution of the variables δtg, θtg, φtg, and ytg for

a given xtg. The solid line represents the cut in each plot. All events inside the cut were

considered as good events and were chosen in the analysis [19]. The boundary is defined in

such a way that R=0 at the boundary. In order to realize a good acceptance in the analysis,

a cut R=1 was implemented. The reaction vertex cut applied in the analysis was ±18.5 cm

from the center of the target. Thus, the target windows were excluded.
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Appendix E: TARGET WINDOW ASYMMETRY IN THE LHRS

The polarized 3He cell used in the experiment was 40 cm long and made of glass (GE180).

It had a diameter of ∼2 cm. The ends were sealed with spherically shaped endcaps of the

same glass material and are referred to as target windows. In the asymmetry analysis, these

two target windows were excluded in order to avoid any kinds of false asymmetries that

could be generated from them. The reaction vertex along the 3He target with the target

windows included is shown in Fig. E.1.

Figure E.1: The reaction vertex along the 3He target with the target windows included
(top) and the target windows only (bottom).

As a part of the false asymmetry analysis, the inclusive asymmetries for different parti-

cles in the LHRS emerging from the target windows were studied. A cut of ±5 mm was used

for both windows 0.20 m being the center for the windows for this particular asymmetry

analysis, i.e., only the target windows were chosen excluding the rest of the length. In prin-

ciple, since the target windows (i.e. glass) are unpolarized, all asymmetries determined by

flipping the 3He spins in the cell should be zero. However, we still see non-zero asymmetries
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in the case of vertical target polarization. These asymmetries are small as compared to the

inclusive 3He asymmetries measured in the LHRS (∼ 10% of the 3He asymmetries) for the

detected particles. Fig. E.2 and Fig. E.3 show the target window asymmetries for different

particles in the LHRS for both vertical and transverse 3He polarizations1. One possible

explanation for the existence of these non-zero asymmetries in the vertical case can be the

amount of 3He still present inside the cuts applied to form the asymmetries. On the other

hand, in the case of transverse magnetic field direction, the observed inclusive asymmetries

are already consistent with zero and hence, even if there is some remaining 3He gas inside

the cuts, it would not have any contribution unlike in the vertical case.

Figure E.2: The measured asymmetries from the target windows for the identified particles
in the case of the vertical magetic field configuration.

1Here, the vertical and transverse 3He polarization directions refer to the holding magnetic field directions.
In principle, when only the target windows are choosen, there should not be any 3He atoms and hence, for
this particular analysis, 3He polarization direction is irrelevant. The directions just represent the usual
convention used in the analysis for the production data.
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Figure E.3: The measured asymmetries from the target windows for the identified particles
in the case of the transverse magnetic field configuration.
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Appendix F: EXTRACTION OF THE NEUTRON SINGLE SPIN

ASYMMETRY FOR SIDIS OFF TRANSVERSELY POLARIZED 3He

In the calculations presented by Scopetta et al. [26], a three body AV18 interaction model

is used in the Impulse Approximation (IA) in order to realize a description of the nuclear

dynamics. The formal expressions of the Collins and Sivers contributions to the azimuthal

single spin asymmetries for π− mesons have been derived, including the initial transverse

momentum of the struck quark. In Ref. [26], extensive discussions are presented about a

formalism to take into account the momentum and energy distributions of the bound nu-

cleons inside the 3He nucleus for the kinematics of E06010.

The Impulse Approximation (IA) approach in this case assumes that in semi-inclusive DIS,

the interacting single neutron has no further interaction with the recoiling nuclear system or

the produced hadron. In addition, it also assumes that the internal structure of the bound

neutron is not any different from that of a free neutron. However, the nuclear dynamics in
3He definitely affects the momentum and binding energy distributions of the bound neutron.

This approximation has been used in the calculation of Collins and Sivers asymmetries of
3He. The extraction of the neutron Collins and Sivers asymmetries are presented after con-

sidering the effective polarizations of the neutrons and protons in 3He. The formalism to

calculate the neutron and proton dilution factors by using the x− z separation of the par-

ton distribution and fragmentation functions is also discussed in Ref. [26]. Fig. F.1 shows

the model calculations for the Collins and Sivers asymmetries for π− mesons on the neutron.

The solid curve represents the full calculation of the asymmetries. The dotted curve

assumes that the proton polarization in 3He is zero, i.e. there is no nuclear effect and all

the nucleons are in a pure S state in 3He. On the other hand, the dashed curve corresponds

to the asymmetries extracted from the full calculation by taking into account the effective

polarizations of both the neutron and the proton in 3He. In Fig. F.1, the asymmetries have

been calculated as a function of x for different values of z at a Q2 value of 2.2 GeV2/c2.

The nuclear effects can be realized clearly in the plot showing the difference between the

full curve and the dotted one. In the range of the x and z values relevant to E06010 (i.e.

0.13 < x < 0.41 and 0.46 < z < 0.59), this effect is ∼10−15%. However, the difference
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between the full curve and the dashed curve is only a few percent. This indicates that

the extraction of the neutron asymmetries from the 3He asymmetries by using effective

polarizations of the nucleons and dilution factors as expressed by Eq.(6.14) in chapter 6

can be reasonably well applied to the E06010 data. In addition, the processes that can be

important beyond the Impulse Approximation (IA) include mainly nuclear shadowing1 and

final state interactions (FSI). However, in the kinematic range of E06010, the shadowing

effects are negligible. On the other hand, as the π− mesons produced in the reaction had

a very high energy of 2.35 GeV and were within 0.46 < z < 0.59, the effect of final state

interactions is asssumed to be small. The effect of final state interactions is being studied

and more realistic models will be formulated in the future.

1In DIS, it was found that the structure function of the bound nucleon is smaller than that of a free
nucleon in the region x <0.1. This phenomenon is called nuclear shadowing.
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Figure F.1: The Collins asymmetry (left) and the Sivers asymmetry (right) of the neutron
for the electroproduction of π− mesons. The full curve shows the complete calculation
of the asymmetries while the dotted curve represents the corresponding asymmetries with
only neutron polarization. The dashed curve is the relevant one for our purpose where the
effective polarizations of both neutrons and protons along with their dilution factors are
taken into account. The plots are corresponding to z = 0.3, 0.45, and 0.6 from the top to
bottom panels. For all of them, a Q2 value of 2.2 GeV2/c2 is considered. The figure is taken
from Ref. [26].
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Appendix G: SYSTEMATIC UNCERTAINTY BUDGET

The results of the Collins and Sivers moments for π− mesons produced on 3He nuclei as

well as neutrons are attributed to the fitting of only the Collins and Sivers terms where

the angular dependences are associated with sin(φh + φS) and sin(φh − φS), respectively.

However, there are other terms such as the Pretzelocity corresponding to a sin(3φh − φS)

dependence as well as sin(φh) and sin(2φh) terms due to small longitudinal polarization

leaking into the transverse polarization. The higher order terms associated with sin(2φh −

φS), sin(φS), cos(φh) (Cahn effect), cos(2φh) (Boer-Mulder effect), etc. also contribute to

the asymmetries. These are neglected in the fitting procedure. Nevertheless it is important

to study the effect of neglecting these terms for the systematic uncertainty estimates. The

absolute values of these contributions for neutrons are assumed to be equal or similar to

those of protons as explained in Ref [18]. An extensive study was performed by X. Qian [18].

Table G.1 summarizes all the uncertainties associated with the different terms for π− meson

production in case of 3He as well as the neutron. The systematic uncertainties are presented

in the unit of statistical uncertainties of the fitting results. The uncertainties in the Collins

and Sivers asymmetry moments are also extracted for all the four x bins used in E06010.

They are reflected by the respective ranges presented in the table.

Table G.1: Systematic uncertainties contributing to the extracted asymmetries which are
not included in the fitting procedure. The uncertainties presented in the table are in percent
of the statistical error bars in the asymmetries. The contributions to the Collins and
Sivers moments represent the uncertainty values in the four x bins used in E06010. In the
calculation of the uncertainties for 3He, the small dilution due to proton (−2.8%) was not
taken into account.

Neglected terms neutron (π−) 3He (π−) Collins (π−) Sivers (π−)
sin(3φh − φS) - - 17-42% 24-75%
sin(φh),sin(2φh) 3% 0.6% < 0.1% < 0.1%
sin(φS) 5% 1% 30-47% 32-49%
sin(2φh − φS) 2% 0.4% 10-11% 28-32%
cos(φh) 5% 5% 1-7% 1-4%
cos(2φh) 5% 5% 1-3% 1-3%
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