t- ϕ coverage simulations for Low Q^2 F_{π}

Garth Huber

University of Regina, Regina, SK, S4S 0A2, Canada

June 12, 2019

Due to problems with the design of the Hall C beamline, it will not be possible for both the HMS and SHMS to access their smallest angle in the summer 2019 run. The spectrometers will be limited to $\theta_{HMS} \ge 10.92^{\circ}$, $\theta_{SHMS} \ge 5,55^{\circ}$, $\theta_{open} \ge 18.60^{\circ}$. Thus, instead of the originally proposed $Q^2 = 0.30 \text{ GeV}^2$ for the low $Q^2 F_{\pi}$ run, we will be limited to $Q^2 = 0.375 \text{ GeV}^2$. To reduce the physics impact, the lab has agreed to give us three extra days, to enable additional $Q^2 = 0.425 \text{ GeV}^2$ data to be taken, to improve the precision of the extrapolation of the electroproduction data to the CERN F_{π} data, as shown in Fig. 1.

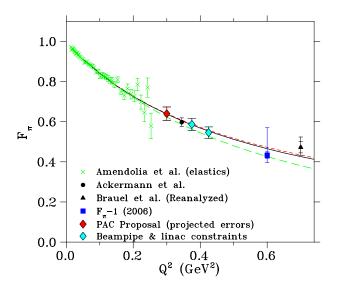


Figure 1: Projected data from this experiment at $Q^2=0.375$, 0.425 GeV², in comparison to the originally proposed point at $Q^2=0.30$ GeV², and world data.

1 $Q^2 = 0.375 \text{ GeV}^2$ Simulations

SIMC simulations were run with the "Param_3000" exclusive π^+ production generator for the kinematics listed in Table 1. At each beam energy, multiple SHMS angles were run, within the allowable constraints, to investigate the experimental acceptance.

$\frac{1}{1000}$ $\frac{1}{100}$ 1							
E_e	$p_{e'}$	$\theta_{e'}$	ϵ	$ heta_q$	q		
(MeV)	(MeV/c)	(deg)		(deg)	$({\rm MeV/c})$		
2758	448	31.97	0.286	-5.70	2300		
3660	1350	15.83	0.629	-8.87	2300		
4562	2252	10.96	0.781	-10.33	2300		

Table 1: $Q^2 = 0.375 \text{ GeV}^2$, W=2.200 GeV kinematics.

The following nominal spectrometer acceptance cuts were applied to all data: |hsdelta| < 8.0%, |hsxptar| < 0.080 rad, |hsyptar| < 0.035 rad, |ssdelta| < 15.0%, |ssxptar| < 0.040 rad, |ssyptar| < 0.024 rad. In addition, diamond cuts were applied to equalize acceptance to that of the lowest ϵ setting, as shown in the top panels of Figs. 2, 3, 4.

Coverage over a wide range of t near $\phi = 0$ is a problem generally, due to SHMS forward angle restrictions. At high ϵ , it is suggested to acquire data at $\theta_{\pi q} = -2.69^{\circ}$ instead of -2° . At medium ϵ , two SHMS settings at $\theta_{piq} = -2.0^{\circ}$, -3.32° are proposed, as shown in Fig. 3. At low ϵ , a setting at $\theta_{\pi q} = +6.0^{\circ}$ was simulated and is shown in Fig. 2 for completeness, but isnot proposed.

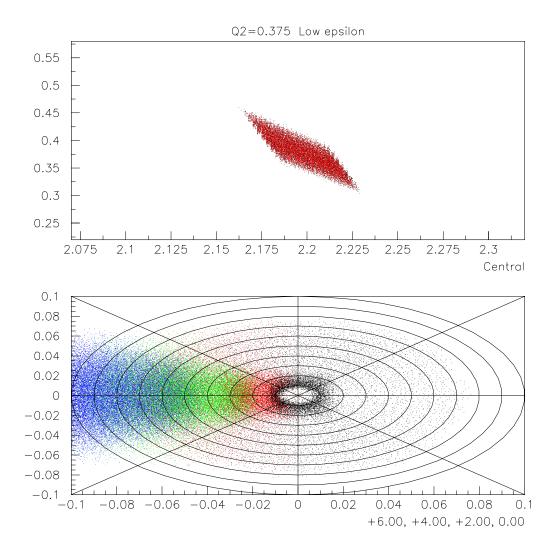


Figure 2: Simulated distributions for the 2.758 GeV beam setting. *Top:* Applied diamond cut is shown in red. *Bottom:* t- ϕ coverage for the applied diamond cut, for SHMS settings: $\theta_{SHMS} = 5.70^{\circ}$ (black), 7.70° (red), 9.70° (green), 11.70° (blue). The black rings are spaced 0.01 GeV² in -t.

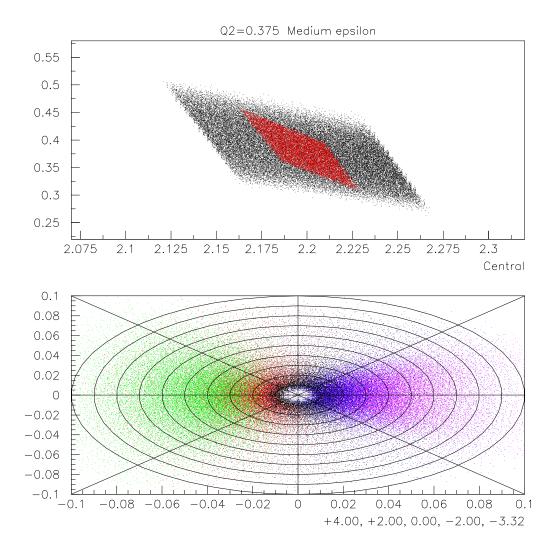


Figure 3: Simulated distributions for the 3.660 GeV beam setting. *Top:* Applied diamond cut is shown in red. *Bottom:* t- ϕ coverage for the applied diamond cut, for SHMS settings: $\theta_{SHMS} = 5.55^{\circ}$ (violet), 6.87° (blue), 8.87° (black), 10.87° (red), 12.87° (green). The black rings are spaced 0.01 GeV² in -t.

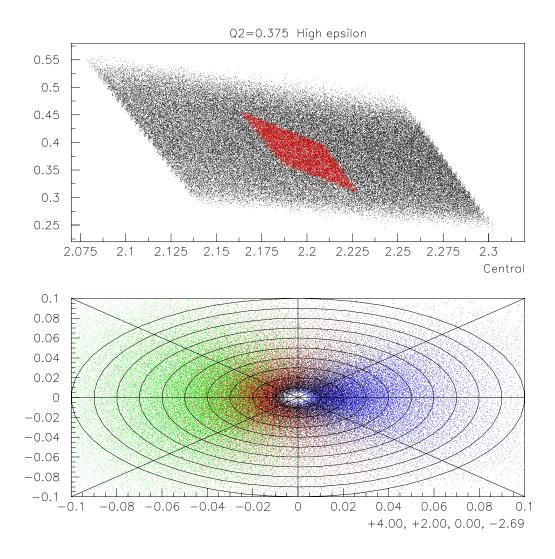


Figure 4: Simulated distributions for the 4.562 GeV beam setting. *Top:* Applied diamond cut is shown in red. *Bottom:* t- ϕ coverage for the applied diamond cut, for SHMS settings: $\theta_{SHMS} = 7.64^{\circ}$ (blue), 10.33° (black), 12.33° (red), 14.33° (green). The black rings are spaced 0.01 GeV² in -t.

2 $Q^2=0.425 \text{ GeV}^2$ Simulations

SIMC simulations were run for the kinematics listed in Table 2. The same spectrometer acceptance cuts were applied as for the $Q^2 = 0.375$ GeV² simulations.

10010 2.	Q 0.120	$\alpha \circ \cdot ,$		00 001	minomatico.
E_e	$p_{e'}$	$\theta_{e'}$	ϵ	$ heta_q$	q
(MeV)	(MeV/c)	(deg)		(deg)	$({\rm MeV/c})$
2758	421	35.19	0.264	-5.75	2326
3660	1323	17.03	0.617	-9.20	2326
4562	2226	11.74	0.774	-10.76	2326

Table 2: $Q^2 = 0.425 \text{ GeV}^2$, W=2.200 GeV kinematics.

The SHMS forward angle restrictions affect the settings slightly differently than at $Q^2=0.375$ GeV². At high ϵ , it is suggested to acquire data for two SHMS settings at $\theta_{piq} = -2.0^{\circ}$, -3.22° , as shown in Fig. 7. At low ϵ , a setting at $\theta_{\pi q} = +6.0^{\circ}$ was simulated and is shown in Fig. 5 for completeness, but is not proposed.

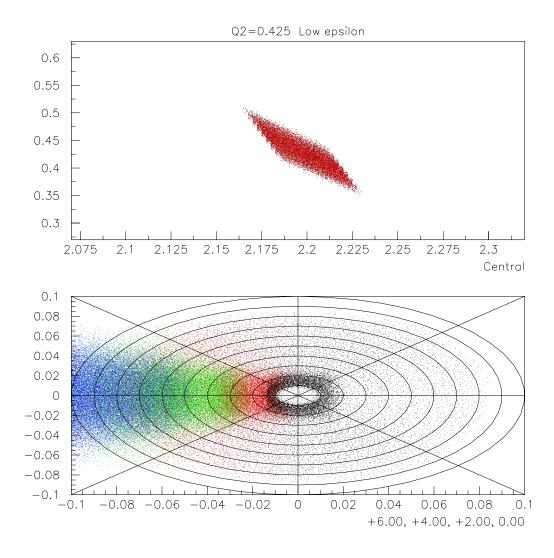


Figure 5: Simulated distributions for the 2.758 GeV beam setting. *Top:* Applied diamond cut is shown in red. *Bottom:* t- ϕ coverage for the applied diamond cut, for SHMS settings: $\theta_{SHMS} = 5.75^{\circ}$ (black), 7.75° (red), 9.75° (green), 11.75° (blue). The black rings are spaced 0.01 GeV² in -t.

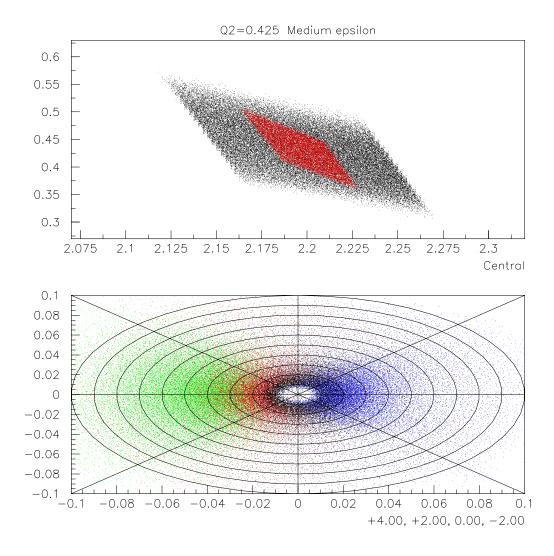


Figure 6: Simulated distributions for the 3.660 GeV beam setting. *Top:* Applied diamond cut is shown in red. *Bottom:* t- ϕ coverage for the applied diamond cut, for SHMS settings: $\theta_{SHMS} = 7.20^{\circ}$ (blue), 9.20° (black), 11.20° (red), 13.20° (green). The black rings are spaced 0.01 GeV² in -t.

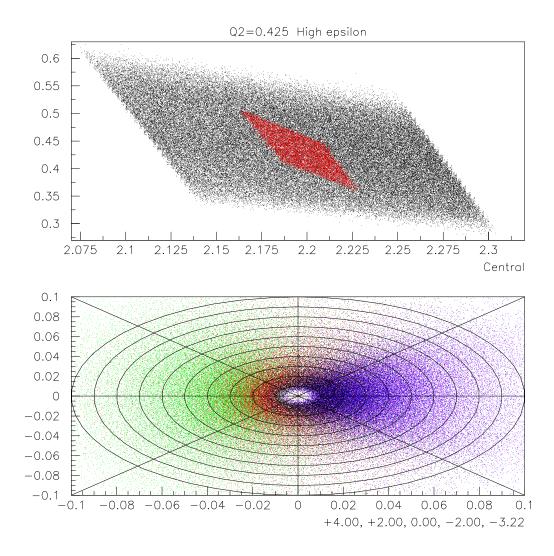


Figure 7: Simulated distributions for the 4.562 GeV beam setting. *Top:* Applied diamond cut is shown in red. *Bottom:* t- ϕ coverage for the applied diamond cut, for SHMS settings: $\theta_{SHMS} = 6.86^{\circ}$ (violet), 8.08° (blue), 10.08° (black), 12.08° (red), 14.08° (green). The black rings are spaced 0.01 GeV² in -t.