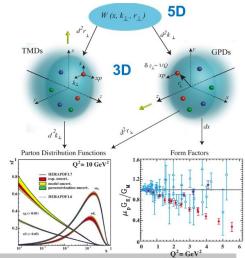
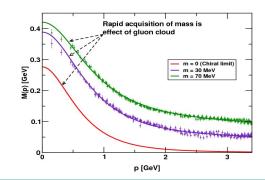
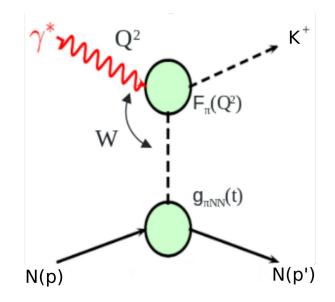
First look at KaonLT experiment data


Richard Trotta, Tanja Horn, Garth Huber, Pete Markowitz, Stephen Kay, Vijay Kumar, Vladimir Berdnikov, Mireille Muhoza, anyone else??



Hadron Structure, Keep or toss??

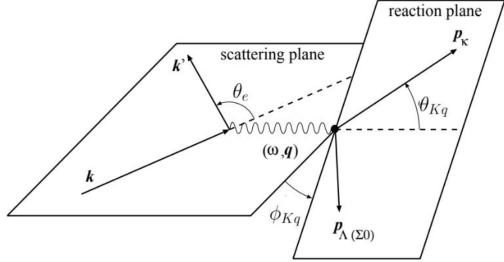
- Generalized Parton Distributions (GPDs)
- Form factors are vital in understanding internal hadronic structure and dynamics
- Kaon and pion form factors are of particular interest
 - Pion is the lightest QCD quark system and is a critical component of dynamically generating mass
 - Kaon replaces the lightest quark with a heavier strange, expanding the understanding of quark interactions



2

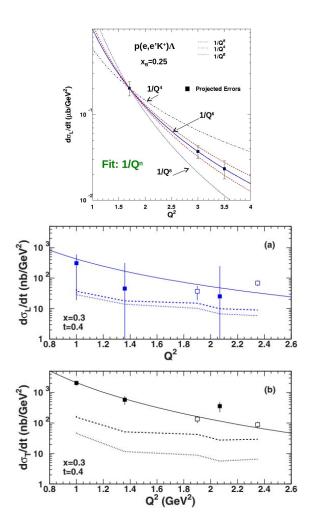
Measurements of the Form Factor

- → At low to moderate Q²: Form factor can be directly measured through elastic scattering
 → At high Q²: Form factor must be indirectly
- measured using the meson cloud of the proton
- To extract the form factor from meson electroproduction data requires:
 - Full L/T separation of cross section isolation of
 - σ_{L}
 - Selection of the pion pole process
 - Extraction of the form factor using a model
 - Validation of technique model dependence checks

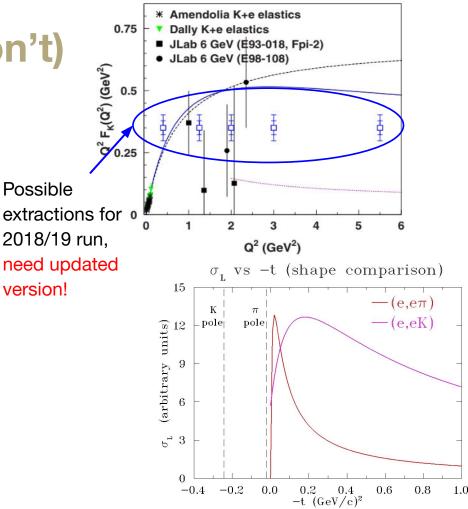

Separating the Cross Section

- Since the photon is virtual and therefore not measured the polarization can be decomposed into the polarized components (L/T and the interference terms LT and TT)
- It is crucial that full azimuthal coverage is achieved to allow further simplification using the Rosenbluth separation technique.
 - Rosenbluth separation involves measuring the terms over full 2π azimuthal coverage and integrating over the experimental acceptance to eliminate any interference terms.

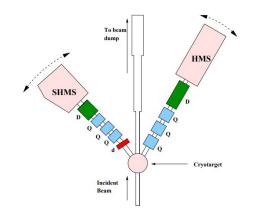
$$2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$


Exclusive K⁺ Electroproduction

- $p(e, e'K^+)\Lambda(\Sigma^0)$
- The exclusive products detected are the scattered electron and Kaon, while the missing hyperon mass is calculated explicitly

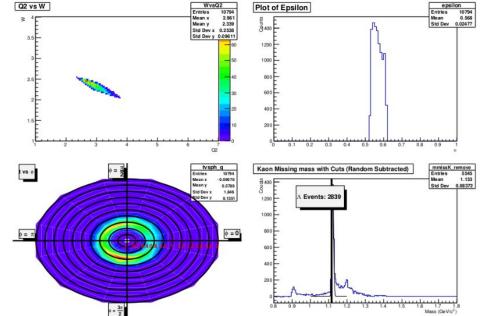

Recent kaon data

- The K⁺ electroproduction cross section has a Q² dependence at fixed x and -t
 - Factorization of $\sigma_{\rm L}$ scales to leading order Q⁻⁶
 - In that regime expect $\sigma_{\rm T}$ to go as Q⁻⁸ and consequently $\sigma_{\rm L} >> \sigma_{\rm T}$
- Data of 6 GeV Jlab cross section appear to be consistent with this expected scaling but with relatively large uncertainties
- M. Carmignotto et al., PhysRevC 97(2018)025204


Recent kaon data (con't)

- Extraction like in the pion case by studying the model dependence at small t
- Comparative extractions of F_π at small and larger t show only modest model dependence
 - larger t data lie at a similar distance from pole as kaon data
- *M. Carmignotto et al., PhysRevC* **97**(2018)025204

Kaon LT - All Data Collected


- The p(e, e'K⁺) Λ , Σ^0 experiment ran in Hall C at Jefferson Lab over the fall and spring.
- An unpolarized continuous electron beam was incident on a liquid hydrogen (LH₂) target. The SHMS detected the electroproduced kaon, in coincidence with the HMS which detected the scattered electron.

E	Q ²	W	X
(GeV)	(GeV ²)	(GeV)	
10.6/6.2	3.0	2.32	0.40
10.6/6.2	2.115	2.95	0.21
10.6/8.2	4.4	2.74	0.40
10.6/8.2	3.0	3.14	0.25
10.6/8.2	5.5	3.02	0.40
4.9/3.8	0.5	2.40	0.09

Kaon LT - All Data Collected

- E12-09-011: Separated L/T/LT/TT cross section over a wide range of Q² and t
- Jlab 12 GeV Kaon program features:
 - First cross section data for Q² scaling tests with kaons
 - Highest Q² for L/T separated kaon electroproduction cross section
 - First separated kaon cross section measurement above W=2.2 GeV

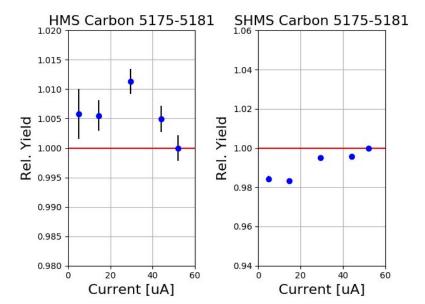
Fall run specifics and online plots

- Setup
- Physics Settings
- Issues that arose
- Online plots

December run specifics and online plots

- Setup
- Physics Settings
- Issues that arose
- Online plots

Spring run specifics and online plots


- Setup
- Physics Settings
- Issues that arose
- Online plots

Analysis Phases

- 1. Calibrations
 - Calorimeter, aerogel, HC cer, HMS cer, DC, Quartz plan of hodo
 - Assure we are replaying to optimize our physics settings
- 2. Efficiencies and offsets
 - Luminosity and elastics
- 3. First iteration of cross section
 - Bring everything together
- 4. Fine tune
 - Fine tune values to minimize systematics
- 5. Repeat previous step
 - Repeat until acceptable cross sections are reached
- 6. Possible attempt at form factor extraction
 - Fit the data to a model and iterate

Current Phase

- Understanding efficiencies from luminosity scans has been ongoing with only one run having been looked at
- In the process of calibrations
- Once calibrations are complete, I will concentrate on elastics studies along with continued studied of luminosity
- Should finish phase one by middle of summer

Conclusion

- Kaon can provide an interesting way to expand previous data of charged pion form factor data with access to the production mechanism involving strangeness
- E12-09-011 has completed its 2018-19 run
- Potential to extract the Kaon form factor from the L/T separated cross sections to the highest Q² achievable at Jlab
 - Full azimuthal coverage, good phase space matching and favorable rates to allow Kaon cross section separation
- Provide much needed data for Q² scaling at fixed x and -t in Kaon electroproduction to validate QCD factorization for hadron imaging studies
- Currently in the first phase of analysis with hopes of finishing by the middle of this summer