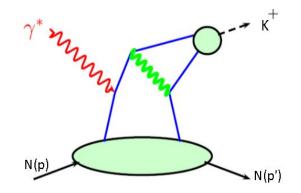
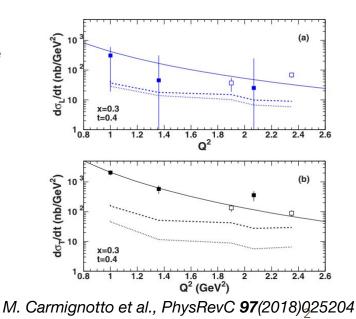
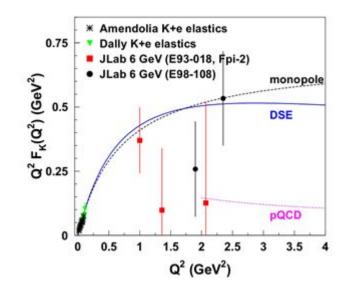
First look at KaonLT experiment data


Richard Trotta, Tanja Horn, Garth Huber, Pete Markowitz, Stephen Kay, Vijay Kumar, Vladimir Berdnikov, Mireille Muhoza, Nathan Heinrich, and the KaonLT collaboration

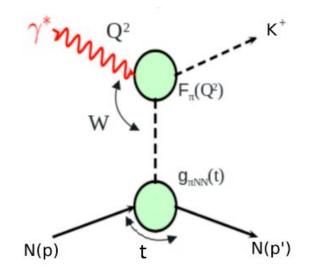


L/T separated data for verifying reaction mechanism


- Jlab 6 GeV data demonstrate the technique of measuring the Q² dependence of L/T separated cross sections at fixed x/t to test QCD Factorization
 - Consistent with expected scaling of $\sigma_{\rm L}$ to leading order $\rm Q^{-6}$ but with relatively large uncertainties
- Separated cross sections over a large range in Q² are essential for:
 - Testing factorization and understanding dynamical effects in both Q² and -t kinematics
 - Interpretation of non-perturbative contributions in experimentally accessible kinematics

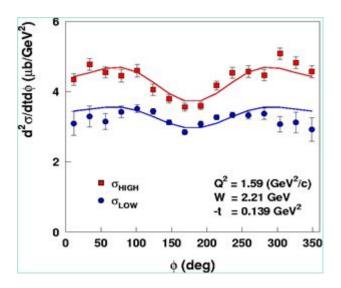
Meson Form Factors

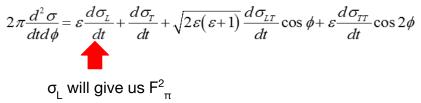
- Pion and kaon form factors are of special interest in hadron structure studies
 - The pion is the lightest QCD quark system and also has a central role in our understanding of the dynamic generation of mass - kaon is the next simplest system containing strangeness
- Clearest test case for studies of the transition from non-perturbative to perturbative regions
- Jlab 6 GeV data show that FF differs from hard QCD calculation evaluated with asymptotic valence-quark Distribution Amplitude (DA), but large uncertainties
- Essential for FF extractions from 12 GeV data:
 - measurements over a range of t, which would allow for interpretation of the kaon pole contribution

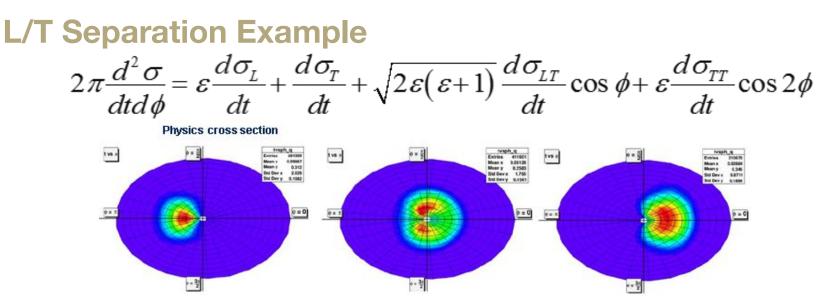

M. Carmignotto et al., PhysRevC **97**(2018)025204 *F.* Gao et al., Phys. Rev. D 96 (2017) no. 3, 034024

Experimental Determination of the π/K + Form Factor

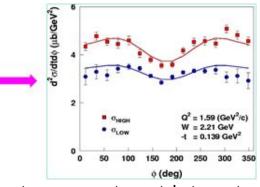
- At larger Q², F²_{π+} must be measured indirectly using the "pion cloud" of the proton via the p(e,e'π⁺)n process
 - At small –t, the pion pole process dominates the longitudinal cross section, σ_1
 - In the Born term model, $F^{2}_{\pi+}$ appears as

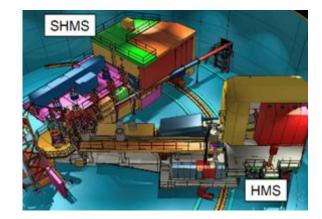

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}^2(t) Q^2 F_\pi^2(Q^2,t)$$

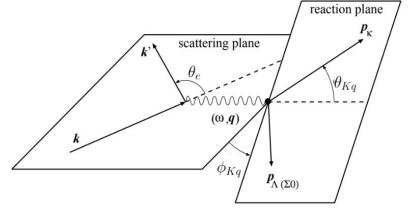

- Requirements:
 - Full L/T separation of the cross section isolation of σ_{I}
 - Selection of the pion pole process
 - Extraction of the form factor using a model
 - Validation of the technique model dependent checks



L/T Separation Example


- σ_L is isolated using the Rosenbluth separation technique
- Measure the cross section at two beam energies and fixed W, Q², -t
- Simultaneous fit using the measured azimuthal angle
 (φ) allows for extracting L, T, LT, and TT
 - \circ Careful evaluation of the systematic uncertainties is important due to the 1/\$\varepsilon\$ amplification in the \$\sigma\$L extraction
 - Spectrometer acceptance, kinematics, and efficiencies
- Magnetic spectrometers a must for such precision cross section measurements
 - This is only possible in Hall C at JLab

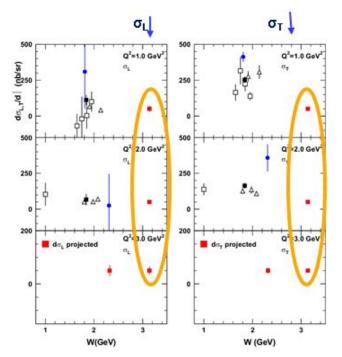

- Three SHMS angles for azimuthal (φ) coverage to determine the interference terms (LT, TT)
- Two beam energies (ε) to separate longitudinal (L) from transverse (T) cross section
- Careful evaluation of the systematic uncertainties is important due to the 1/ε amplification in the σL extraction
 - spectrometer acceptance, kinematics, efficiencies...



Fit using measured ϵ and ϕ dependence

Review E12-09-011 (KaonLT) Goals

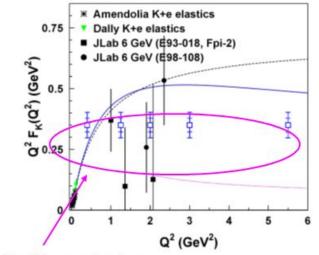
- The Q² dependence will allow studying the scaling behavior of the separated cross sections
 - First cross section data for Q² scaling tests with kaons
 - Highest Q² for L/T separated kaon electroproduction cross section
 - First separated kaon cross section measurement above W=2.2 GeV
- The t-dependence allows for detailed studies of the reaction mechanism
 - Contributes to understanding of the non-pole contributions, which should reduce the model dependence in interpreting the data
 - Bonus: if warranted by data, extract the kaon form factor



KaonLT Sample Projections

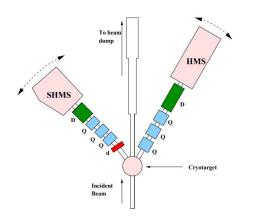
• E12-09-011: Separated L/T/LT/TT cross section over a wide range of Q² and t E12-09-011 spokespersons: T. Horn, G. Huber, P. Markowitz

• JLab 12 GeV Kaon Program features:


- First cross section data for Q2 scaling tests with kaons
- Highest Q2 for L/T separated kaon electroproduction cross section
- First separated kaon cross section measurement above W=2.2 GeV

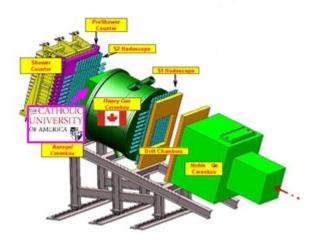
blue points from M. Carmignotto, PhD thesis (2017)

KaonLT: Projections for F_{K+}(Q²) Measurements


- E12-09-011: primary goal L/T separated kaon cross sections to investigate hard-soft factorization and non-pole contributions
- Possible K⁺ form factor extraction to highest possible Q² achievable at JLab
 - Extraction like in the pion case by studying the model dependence at small t
 - Comparative extractions of Fp at small and larger t show only modest model dependence
 - larger t data lie at a similar distance from pole as kaon data

Possible extractions from 2018/19 run

Kaon LT - All Data Collected


 The p(e, e'K⁺)Λ,Σ⁰ experiment ran in Hall C at Jefferson Lab over the fall and spring.

E (GeV)	Q² (GeV²)	W (GeV)	X	ε _{high}	٤ _{low}
10.6/6.2	3.0	2.32	0.40	0.8791	0.5736
10.6/6.2	2.115	2.95	0.21	0.7864	0.2477
10.6/8.2	4.4	2.74	0.40	0.7148	0.4805
10.6/8.2	3.0	3.14	0.25	0.6668	0.3935
10.6/8.2	5.5	3.02	0.40	0.5291	0.1838
4.9/3.8	0.5	2.40	0.09	0.6979	0.4515

Experimental Details

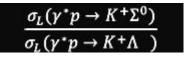
- Hall C: ke=3.8, 4.9, 6.4, 8.5, 10.6 GeV
- SHMS for kaon detection :
 - Kaon angles between 6 30 deg
 - Kaon momenta between 2.7 6.8 GeV/c
- HMS for electron detection :
 - angles between 10.7 31.7 deg
 - momenta between 0.86 5.1 GeV/c
- Particle identification:
 - Dedicated Aerogel Cherenkov detector for kaon/protor separation
 - Four refractive indices to cover the dynamic range required by experiments
 - Heavy gas Cherenkov detector for kaon/pion separation

n	πthr (GeV/c)	Kthr (GeV/c)	Pthr (GeV/c)
1.030	0.57	2.00	3.80
1.020	0.67	2.46	4.67
1.015	0.81	2.84	5.40
1.011	0.94	3.32	6.31

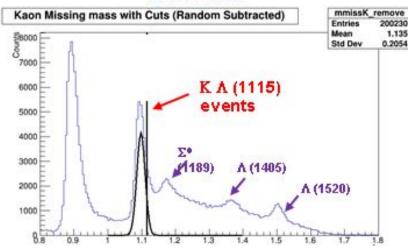
SHMS small angle operation

 Some issues with opening and small angle settings at beginning of run, but SHMS at 6.01° and HMS at 12.7° on 12/17/18

Work of many people...

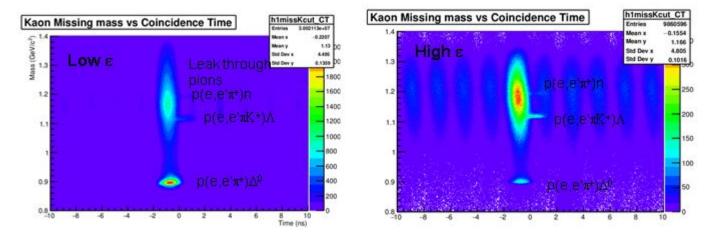


KaonLT Event Selection


 Isolate Exclusive Final States through missing mass

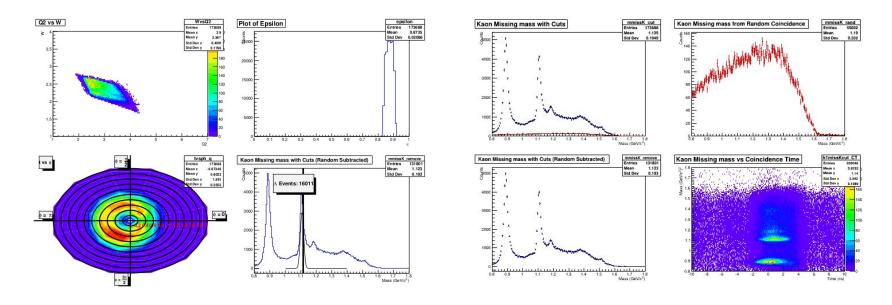
 $M_X = \sqrt{(E_{det} - E_{init})^2 - (p_{det} - p_{init})^2}$

- Coincidence measurement between kaons in SHMS and electrons in HMS
 - simultaneous studies of KΛ and KΣ⁰ channels...and a few others...
- Kaon pole dominance tests through


 $\circ \quad \mbox{Should be similar to ratio of coupling} \\ \mbox{constants $g^2_{\ pK\Lambda}/g^2_{\ pK\Sigma}$ if t-channel} \\$

Online data

Interesting Physics in the other channels


 Large difference in L/T ratio between p(e.e'π⁺)n and p(e,e'π⁺)Δ⁰ final states – G. Huber hclog #3640187

- Large increase in neutron missing mass at high epsilon is evidence of the pion-pole process at low Q² and small –t, which suggests $\sigma_1 >> \sigma_T$
- Δ^0 exclusive longitudinal cross section expected to be at best $\sigma_L \sim \sigma_T$

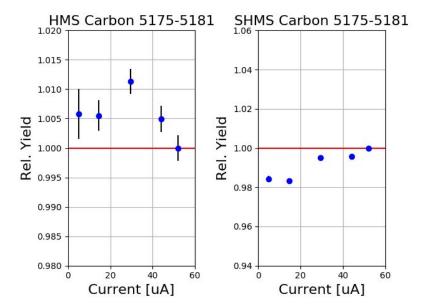
Fall run specifics and online plots

- Physics Settings
- Online plots

December run specifics and online plots

- Physics Settings
- Online plots

Spring run specifics and online plots


- Physics Settings
- Online plots

Analysis Phases

- 1. Calibrations
 - Calorimeter, aerogel, HC cer, HMS cer, DC, Quartz plan of hodo
 - Assure we are replaying to optimize our physics settings
- 2. Efficiencies and offsets
 - Luminosity and elastics
- 3. First iteration of cross section
 - Bring everything together
- 4. Fine tune
 - Fine tune values to minimize systematics
- 5. Repeat previous step
 - Repeat until acceptable cross sections are reached
- 6. Possible attempt at form factor extraction
 - Fit the data to a model and iterate

Current Phase

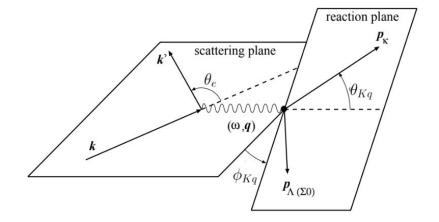
- Understanding efficiencies from luminosity scans has been ongoing with only one run having been looked at
- In the process of calibrations
- Once calibrations are complete, I will concentrate on elastics studies along with continued studied of luminosity
- Should finish phase one by middle of summer

Conclusion

- Kaon can provide an interesting way to expand previous data of charged pion form factor data with access to the production mechanism involving strangeness
- E12-09-011 has completed its 2018-19 run
- Potential to extract the Kaon form factor from the L/T separated cross sections to the highest Q² achievable at Jlab
 - Full azimuthal coverage, good phase space matching and favorable rates to allow Kaon cross section separation
- Provide much needed data for Q² scaling at fixed x and -t in Kaon electroproduction to validate QCD factorization for hadron imaging studies
- Currently in the first phase of analysis with hopes of finishing by the middle of this summer

Extra Slides

Comparison of high and low epsilon


10.6 GeV (high ε)

Q2 vs W Q2 vs W WvsQ2 Plot of Epsilon epsilon WvsQ2 Plot of Epsilon epsilon Entries 173688 Entries 173688 Mean 0.8735 Std Dev 0.02086 Entries Mean x 10794 2.961 Entries 10794 Mean 0.568 Std Dev 0.02477 2.9 Magny M Meany 2.367 0.4091 Mean y 2.339 \$000 Std Dev x 0.2538 Std Dev y 0.09611 9400 Std Dev x 0.4091 Std Dev y 0.1796 20.000 160 1000 140 15000 2.5 120 10000 400 5000 بليتينها بتنبيا تتبينا بتتنا تتبي 0.2 0.3 0.4 0.5 0.6 0.2 0.5 0.6 0.7 0.8 0.1 tv sph_q 10794 tvsph_q Entries 173688 Kaon Missing mass with Cuts (Random Subtracted) mmissK_remove Entries 131801 Kaon Missing mass with Cuts (Random Subtracted) mmissK_remove Entries 5545 t vs ø tvs ø -0.09578 1.133 Mean x -0.07346 Mean 1,123 Mean x Mean Coupts H 400 F Mean y 0.6022 Std Dev x 1.891 Std Dev 0.193 Mean y 0.5789 Std Dev 0.08372 Std Dev x 1.846 Events: 2839 Events: 1601 Dev y 0.1351 1200 Std Dev v 0.2552 4000 1000 3000 $\phi = 0$ $\phi = 0$ b = 7 2000 1000 12 13 14 15 16 17 1 بايتينا يتبيان 1.5 1.4 1.6 $=\frac{3\pi}{2}$ Mass (GeV/c2) Mass (GeV/c2

6.2 GeV (low ε)

Separating the Cross Section

- It is crucial that full azimuthal coverage is achieved to allow further simplification using the Rosenbluth separation technique.
 - Rosenbluth separation involves measuring the terms over full 2π azimuthal coverage and integrating over the experimental acceptance to eliminate any interference terms.

 $2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$

p(e, e'K⁺) $\Lambda(\Sigma^0)$