Quick first look at KaonLT experiment data

Richard Trotta, Tanja Horn, Garth Huber, Pete Markowitz, Stephen Kay, Vijay Kumar, Vladimir Berdnikov, Mireille Muhoza, Nathan Heinrich, and the KaonLT collaboration

Review E12-09-011 (KaonLT) Goals

- Q² dependence will allow studying the scaling behavior of the separated cross sections
 - First cross section data for Q² scaling tests with kaons
 - Highest Q² for L/T separated kaon electroproduction cross section
 - First separated kaon cross section measurement above W=2.2 GeV
- t-dependence allows for detailed studies of the reaction mechanism
 - Contributes to understanding of the non-pole contributions, which should reduce the model dependence
 - Bonus: if warranted by data, extract the kaon form factor

 Q^2 (GeV²)

3.5

0 0.5

L/T Separation Example

Setting	Low ɛ data	High ɛ data
Q ² =0.50 W=2.40	1	1
Q ² =2.1 W=2.95	×→✓	1
Q ² =3.0 W=2.32	×-×	1
Q ² =3.0 W=3.14	×-×	1
Q ² =4.4 W=2.74	×→✓	1
Q ² =5.5 W=3.02	X+/	1

- $\sigma_{\rm l}$ is isolated using the Rosenbluth separation technique
- Measure the cross section at two beam energies and fixed W, Q², -t
- Three SHMS angles for azimuthal (Φ) coverage to determine the interference terms (LT, TT)

Plots by R. Ambrose, S. Kay, R. Trotta

Experimental Details

- Hall C: k_e=3.8, 4.9, 6.4, 8.5, 10.6 GeV
- SHMS for kaon detection :
 - \circ angles, 6 30 deg
 - o momenta, 2.7 6.8 GeV/c
- HMS for electron detection :
 - angles,10.7 31.7 deg
 - o momenta, 0.86 5.1 GeV/c
- Particle identification:
 - Dedicated Aerogel Cherenkov detector for kaon/proton separation
 - Four refractive indices to cover the dynamic range required by experiments
 - Heavy gas Cherenkov detector for kaon/pion separation

n	π _{thr} (GeV/c)	K _{thr} (GeV/c)	P _{thr} (GeV/c)
1.030	0.57	2.00	3.80
1.020	0.67	2.46	4.67
1.015	0.81	2.84	5.40
1.011	0.94	3.32	6.31

SHMS small angle operation

- Some issues with opening and small angle settings at beginning of run
 - \circ $\,$ SHMS at 6.01° $\,$
 - HMS at 12.7°

[12/17/18]

Analysis Phases

Current Phase

- 1. Calibrations
 - Calorimeter, aerogel, HG cer, HMS cer, DC, hodo
 - Assure we are replaying to optimize our physics settings
- 2. Efficiencies and offsets
 - Luminosity and elastics
- 3. First iteration of cross section
 - Bring everything together
- 4. Fine tune
 - Fine tune values to minimize systematics
- 5. Repeat previous step
 - Repeat until acceptable cross sections are reached
- 6. Possible attempt at form factor extraction
 - Fit the data to a model and iterate

Come by on Friday, June 28th at 3:30 pm for a more detailed talk!

Coffee Break	
F113, Cebaf Center	15:10 - 15:30
Update/First results on KaonLT	Richard TROTTA
F113, Cebaf Center	15:30 - 15:50