

Stephen Kay University of Regina

26/08/19

- $\bullet\,$ In addition to the π and K analysis, can also analyse proton events in the data
- Similar motivation to the work Bill did, *u* channel is largely ignored
- Want to try and get some initial results before May next year, in time for a workshop Bill is organising
- As a start, need to check PID of proton events and see if there are any issues

u-Channel Events

26/08/19

3 / 17

An example u-channel process, here we have backward angle ω production. [1]

[1] - W.Li. PhD Thesis, University of Regina 2017

- Of course, other neutral mesons can be produced
- Numerous physics channels to examine
- Ratios of various neutral meson production channels at different ϵ values e.g. ϕ to ω ratio
- $\omega L/T$ ratios as a function of -u with the eventual aim of separated cross sections where possible

26/08/19

- Q^{-n} dependence of $\omega L/T/LT/TT$ cross sections
- For now though, need a clean sample!

Selection Cuts

Stephen Kay

• Want events with e^- in HMS and p in SHMS

University of Regina

• Various cuts in both detectors used for all events before PID,

Table: Common cuts before PID, events *not* in the range shown are removed.

Cut	HMS	SHMS
δ	< 8	$-10 < \delta < 20$
θ	< 0.08	< 0.06
ϕ	< 0.045	< 0.04
E _{TotNorm}	> 0.7	N/a
HMS Cer NPE	> 1.5	N/a

26/08/19

5 / 17

PID Cuts - Detectors

Stephen Kay

- PID is by detector hits, namely the Aerogel and HGC
- $\bullet\,$ Requirement for a 'hit' in the detector is that there is $> 1.5\,$ NPE for the event
- Hit combinations for π , K and p are summarised below

Table: Hit combinations in the HGC and Aerogel for each hadron species

Hadron	HGC Hit	Aerogel Hit
π	\checkmark	\checkmark
K	×	\checkmark
p	×	×

26/08/19

6 / 17

University of Regina

Timing Cuts and Other Comments

- Timing cuts depend upon the kinematic setting, too many to list
- All are done so that *six* random buckets are selected for random subtraction
- Due to the way *t* and *u* are defined in hcana, when we select protons, *t* is actually *u* and vice versa!
- hcana defines them as follows

$$MandelT = (PQ - fX).M2()$$
$$MandelU = (PQ - fB).M2()$$

- $PQ \rightarrow q$ Vector, $fX \rightarrow 4$ momentum of secondary particle, $fB \rightarrow 4$ momentum of undetected recoil
- Assumes secondary particle is the one being detected, not the recoil

26/08/19

7 / 17

$Q^2=3, W=2.32$ Centre, High ϵ Plots - Timing

Coincidence time as a function of β for protons. Note that β is slightly low implying hodoscope calibration is probably off.

26/08/19

8

University of Regina

Stephen Kay

$Q^2 = 3, W = 2.32$ Centre, High ϵ Plots - PID

NPE in SHMS Aerogel and Heavy Gas

26/08/19

9

17

NPE in Aerogel Cherenkov vs NPE in HGC for all events. Red lines illustrate 1.5 NPE cuts.

$Q^2 = 3, W = 2.32$ Centre, High ϵ Plots - MM_{ρ}

Missing mass for proton events, random background subtracted.

Stephen Kay University of Regina

26/08/19 10 / 17

$Q^2 = 3, W = 2.32$ Centre, High ϵ Plots - $Q^2(W)$

≥ _{3.4} 90 80 3.2 70 3 60 2.8 2.6 50 2.4 40 2.2 30 2 20 1.8 10 1.6 4.5 Q² 1.5 2.5 3.5 3 4

Q² vs W

 $Q^2(W)$ 'diamond' plot.

Stephen Kay University of Regina

26/08/19 11 /

17

$Q^2 = 3, W = 2.32$ Centre, High ϵ - Comments

- From timing plot, β looks off
- η' very hard to make out, large physics background or need to clean up PID more?

26/08/19

12 / 17

- However, not seeing any "extra" strange peaks anywhere... for this setting!
- Do on other settings as we will see

$Q^2 = 3, W = 3.14$ Centre, High ϵ Plots - MM_p

Missing mass for proton events, random background subtracted. Note the peak at ${\sim}850~\text{MeV}$ which does not correspond to any real flavourless meson.

26/08/19

13

17

$Q^2=3, W=2.32$ Centre, High ϵ Plots - MM_K

Kaon Missing mass with Cuts (Random Subtracted)

Missing mass for kaon events. Note the peak at $\sim 0.9 \ GeVc^{-2}$.

Stephen Kay University of Regina

26/08/19 14 / 17

$Q^2=3, W=2.32$ Centre, High ϵ Plots - HGC X/Y

- Where are the events in these extra peaks passing through the focal plane?
- $\bullet\,$ Look at "kaon" events where the missing mass is $0.7 < MM_K < 0.9$

Projection of HGC NPE as a function of X and Y position in the HGC. Only "kaon" events with 0.7 $< MM_K < 0.9$ are plotted.

26/08/19

15 / 17

$Q^2 = 3, W = 2.32$ Centre, High ϵ Plots - MM_P for Miss-ID'd Kaons

• What does the proton missing mass value look like for these events?

 MM_p distribution for "kaon" events with MM_K that does not correspond to a physical state. The peak shown is at $\sim 0.77 GeVc^{-2}$.

26/08/19

16 / 17

Concluding Thoughts

- Would be naive to conclude that events shown are definitely proton events where we have an ω produced
- Gives a hint in the direction we need to go though, should try to remove background and add further PID cuts where possible
- Add a shower/preshower cut?
- Can easily process all events again and timing windows look OK for now
- Need to focus on kinematics that do not look so good
- Will assess each kinematic individually and sort into good/bad categories

26/08/19

17 / 17