E12-09-011 Physics Analysis Possibilities

Garth Huber University of Regina

August 15, 2019

We have an amazing amount of data from the KAON-LT experiment over a wide kinematic range. Below is my list of possible physics outputs from the acquired data, and my assessment of their potential physics impact and whether they should be short-term or long-term analysis goals.

Tentative names are placed next to many items. These, of course, are subject to change. Also, there is inevitable (and even desirable as cross-check) overlap between the work done by group members.

- 1. Physics from K^+ channels:
 - (a) $p(e, e'K^+)\Lambda/p(e, e'\pi^+)n$ ratios at low and high ϵ (initial) and, later, investigation of separated ratios (e.g. $\sigma_T(K^+\Lambda)/\sigma_T(\pi^+n)$ for various kinematics) and determination of $g_{KN\Lambda}$, $g_{NN\pi}$ coupling constant ratio versus t. These data could be vital in reducing the theoretical uncertainty in the $g_{KN\Lambda}$ coupling constant. Tentative: Richard Trotta (cross sections), TBA (coupling const)
 - (b) p(e, e'K⁺)Λ beam helicity asymmetry (short term). Stephen Wood has already shown that the asymmetry is quite large, and hence interesting. There is a good chance the Q² > 2 data could be the first publication from our experiment. Tentative: TBA
 - (c) $p(e, e'K^+)\Lambda$ L/T ratios versus -t (initial) and L/T/LT/TT separated cross sections (later) for $Q^2 > 2$ GeV². Comparison to Regge and GPD models. Tentative: Richard Trotta
 - (d) $p(e, e'K^+)\Lambda$ L/T ratios versus -t (initial) and L/T/LT/TT separated cross sections (later) at $Q^2 = 0.5$ GeV². If warranted by the data, extract the K^+ electric form factor and compare to extrapolation of exact form factor values from CERN [Amendolia, et al, Physics Letters **B178** (1986) 435]. This is anticipated to be a high-impact Physical Review Letters publication. Tentative: Vijay Kumar
 - (e) $p(e, e'K^+)\Sigma/p(e, e'K^+)\Lambda$ ratios at low and high ϵ (initial) and, later, investigation of separated ratios (e.g. $\sigma_L(K^+\Sigma)/\sigma_L(K^+\Lambda)$ for various kinematics) and determination of $g_{KN\Lambda}$, $g_{KN\Sigma}$ coupling constant ratio versus t. This is listed as one of our K^+ pole tests.

Tentative: Richard Trotta (pole tests), TBA (coupling const)

- (f) $p(e, e'K^+)\Lambda(1405)/p(e, e'K^+)\Lambda(1115)$, $p(e, e'K^+)\Lambda(1520)/p(e, e'K^+)\Lambda(1115)$ ratios at high ϵ for various kinematics (short term), and unseparated cross sections (later). Likely this will be possible only for the $Q^2 > 2$ GeV² data. Tentative: UofR BSc Honours project (initial studies), TBA (cross sect)
- (g) Q^{-n} -dependence of $p(e, e'K^+)\Lambda$ L/T/LT/TT cross sections at x = 0.40, and comparison to QCD-scaling predictions. Longer term. Tentative: Vladimir Berdnikov (initial studies), TBA (final results)
- (h) K^+ pole tests of separated $p(e, e'K^+) d\sigma_L/dt$ for $Q^2 > 2 \text{ GeV}^2$, and, if warranted, K^+ electric form factor versus Q^2 . Flagship analysis, likely to be our highest cited work. Longer term goal. Tentative: Richard Trotta
- 2. Physics from π^+ channels:

Because of the substantial π^+ leak-through into the K^+ channel in certain kinematics, we have to look carefully at the π^+ data before obtaining reliable K^+ cross sections. In addition, we have several excellent opportunities for good physics publications from these data.

- (a) $p(e, e'\pi^+)n$ L/T ratios versus -t (initial) and L/T/LT/TT separated cross sections (later) for $Q^2 > 2$ GeV². Comparison to Regge and GPD models. In some kinematics, this will be limited by how well the high and low $\epsilon Q^2 - W$ diamonds overlap. See Monte Carlo studies done by Salina Ali. Tentative: Ali Usman
- (b) p(e, e'π⁺)n beam helicity asymmetry, if it is sufficiently large to be interesting. Steve
 Wood has asked our intentions about these data.
 Tentative: TBA
- (c) $p(e, e'\pi^+)n/p(e, e'\pi^+)\Delta^0$ ratios at low and high ϵ (initial) and, later, investigation of separated ratios (e.g. $\sigma_T(\pi^+\Delta^0)/\sigma_T(\pi^+n)$ for various kinematics). See GH's note at hclog 3640187 on the apparently very different L/T ratios of these two channels for $Q^2 > 2 \text{ GeV}^2$.

Tentative: Ali Usman (initial studies), TBA (cross sections)

(d) Q^{-n} -dependence of $p(e, e'\pi^+)n L/T/LT/TT$ cross sections, and comparison to QCDscaling predictions. With our new x = 0.40 data, this has the potential to be a significant advance over our earlier study, "Scaling study of the pion electroproduction cross sections", Physical Review C **78** (2008) 058201. Longer term goal. Tentative: Vladimir Berdnikov (initial studies), TBA (final results)

- (e) π^+ pole tests of separated $p(e, e'\pi +)n \ d\sigma_L/dt$ and extraction of pion form factor for the $Q^2 > 2 \ \text{GeV}^2$ settings at sufficiently low -t. Longer term goal. Tentative: Ali Usman
- (f) $p(e, e'\pi^+)n$ L/T ratios versus -t (initial) and L/T/LT/TT separated cross sections (later) at $Q^2 = 0.5$ GeV². If warranted by the data, extract the π^+ electric form factor and compare to extrapolation of exact form factor values from CERN [Amendolia, et al, Physics Letters **B277** (1986) 168]. This would supplement the data taken at $Q^2 = 0.4$ GeV² in the PION-LT experiment. Tentative: Vijay Kumar
- (g) $p(e, e'\pi^+)n$ L/T ratios versus -t (initial) and L/T/LT/TT separated cross sections (later) at $Q^2 = 0.375, 0.425$ GeV² from PION-LT experiment. If warranted by the data, extract the π^+ electric form factor and using also data from KAON-LT, compare to extrapolation of exact form factor values from CERN. Tentative: Vijay Kumar
- (h) p(e, e'π⁺)n beam helicity asymmetry from PION-LT experiment, if it is sufficiently large to be interesting.
 Tentative: TBA
- 3. Physics from p channels:
 - (a) If the ρ missing mass peak can be reliably separated from the uncorrelated 2π phasespace underneath, $p(e, e'p)\rho/p(e, e'p)\omega$ ratios at low and high ϵ (initial) and, later, investigation of separated ratios (e.g. $\sigma_T(p\rho)/\sigma_T(p\omega)$ for various kinematics) and comparison to TDA and Regge model calculations at $Q^2 > 2$ GeV². This would be a nice initial study to have ready in time for the JLab *u*-channel workshop in May 2020.

Tentative: Stephen Kay (initial studies), TBA (final results)

- (b) $p(e, e'p)\phi/p(e, e'p)\omega$ ratios at low and high ϵ (initial) and, later, investigation of separated ratios (e.g. $\sigma_T(p\phi)/\sigma_T(p\omega)$ for various kinematics) and comparison to TDA and Regge model calculations. This is of particular interest because *u*-channel ϕ production is uniquely sensitive to the $s\overline{s}$ component of the proton wave function. Tentative: Stephen Kay (initial studies), TBA (final results)
- (c) $p(e, e'p)\omega$ L/T ratios versus -u (initial) and L/T/LT/TT separated cross sections (later) for $Q^2 > 2$ GeV². Comparison to Regge and TDA models. Tentative: Stephen Kay (initial studies), TBA (final results)
- (d) $p(e, e'p)\omega$ beam helicity asymmetry and comparison to TDA calculations. Tentative: TBA

- (e) If warranted by the data, $p(e, e'p)\eta$ and $p(e, e'p)\eta'$ cross sections at high and low ϵ . See studies in Michael Hladun's B.Sc. Honours thesis. Tentative: UofR BSc Honours project (initial studies), TBA (cross sect)
- (f) Q^{-n} -dependence of $p(e, e'p)\omega L/T/LT/TT$ cross sections at x = 0.40, and comparison to QCD-scaling predictions. Study also the W-dependence Longer term. Tentative: Stephen Kay (initial studies), TBA (final results)