# DRIFT CHAMBER

### Analysis workshop



Abishek karki

#### SHMS detector stack



Fig: drift chamber mounted on hut frame 2

### **Components of chamber**

- 2 chamber in each spectrometer
- Each chamber has 6 wire planes
- Each wire plane is sandwich between 2 cathode plane



Top view of chamber

Gas mix Ethane+Argon 50:50 By volume



Ar = Ionization Ethane = Quench

#### Working Principle of Drift Chamber

Incoming particles ionize the gas molecules, primary electrons are accelerated by electric field and knocks out the secondary electrons and eventually produces avalanche which induces a current signal on the sense wire.



#### Working Principle of Drift Chamber



• TDC values from all of the wire in a given plane for a large number of events is taken to obtain a drift time distribution which is then averaged over all the wire of a plane to form a drift time distribution per plane.







 Calibration procedure makes a lookup table to convert drift times to drift distances



## **Calibration procedure**

### **Skinny rootfile**

- To speed up the calibration we can trim the rootfiles
  - cd DEF-files/{spec}/DC/PRODUCTION/BLOCK
  - Change the pblock\_vars.def

| <mark>#</mark> ************      |
|----------------------------------|
| <pre># Block Definitions *</pre> |
| #******                          |
|                                  |
| block T.shms.*                   |
| block P.ngcer.*                  |
| block P.dc.*                     |
| block P.hod.*                    |
| block P.hgcer.*                  |
| block P.aero.*                   |
| block P.cal.*                    |
| block P.tr.*                     |
| block P.gtr.*                    |
| block P.kin.*                    |
| block P.rb.*                     |
| block P.react.*                  |
|                                  |
|                                  |



### **Getting uncorrected rootfile**

set the parameter 'p\_using\_tzero\_per\_wire = 0' in the parameter file located at: hallc\_replay/PARAM/{spec}/DC/perc\_cut.param

```
; Utilize per wire tzero offsets, 1 means true
p_using_tzero_per_wire = 1
```

```
; TEST-STAND PARAMETERS
; Custom parameter file which should be loaded when aiming to analyze HMS DC
; data with no tracking.
```

```
psel_using_scin = 0
```

```
pdc_fix_lr = 1
pdc_fix_propcorr = 1
```

; Zero time correction for each plane in ns that is added to TDC time. pdc\_plane\_time\_zero = 1290.00, 1290.00, 1290.00, 1290.00, 1290.00, 1290.00 1290.00, 1290.00, 1290.00, 1290.00, 1290.00, 1290.00

### **Replay the Run**

• From hallc replay

Execute

./hcana

.x SCRIPTS/{spec}/PRODUCTION/{spec} replay production all {spec}.C

#### With run Number and the event number as argument

( take higher event number for better result)



### Main Calibration code

• Run the calibration script with the newly produced root file as input

Code reside at : hallc\_replay/CALIBRATION/dc\_calib/script Open file main\_calib.C

#### using namespace std;

```
int main_calib()
```

```
//prevent root from displaying graphs while executing
gROOT->SetBatch(1);
```

```
//measure execution time
clock_t cl;
cl = clock();
```

```
//pid_elec, pid_kFALSE (no PID cuts)
```

```
// J
// DC_calib obj("HMS", "../../../ROOTFiles/hms_replay_production_all_1856_hodtrefcut1000_-1.root", 1856,-1, "pid_elec", "card");
DC_calib obj("SHMS", "../../../ROOTFiles/shms_replay_production_all_1791_-1.root", 1791, -1, "pid_kFALSE", "card");
// DC_calib obj("HMS", "../../../ROOTFiles/hms_coin_replay_production_1866_1000000.root", 1866, 1000, "pid_kFALSE");
obj.setup Directory():
```

DC\_calib obj("SHMS", "../../../ROOTfiles/shms\_replay\_production\_all\_2248\_-1.root", 2248, -1,



Run the script by :
 root -l main\_calib.C

 Produce folder SHMS\_DC\_cardlog\_run#

#### This folder contains

pdc\_calib\_2248.param pdc\_tzero\_per\_wire\_2248.param SHMS\_DC\_driftimes.root t\_zeroCARD\_values\_1u1.dat t\_zeroCARD\_values\_1u2.dat t\_zeroCARD\_values\_1v1.dat t\_zeroCARD\_values\_1v2.dat t\_zeroCARD\_values\_1x1.dat t\_zeroCARD\_values\_1x2.dat t\_zeroCARD\_values\_2u1.dat t\_zeroCARD\_values\_2u2.dat t\_zeroCARD\_values\_2v1.dat t\_zeroCARD\_values\_2v2.dat t\_zeroCARD\_values\_2x1.dat t\_zeroCARD\_values\_2x2.dat pdc\_calib\_2248.param pdc\_tzero\_per\_wire\_2248.param SHMS\_DC\_driftimes.root t\_zeroCARD\_values\_1u1.dat t\_zeroCARD\_values\_1u2.dat t\_zeroCARD\_values\_1v1.dat t\_zeroCARD\_values\_1v2.dat t\_zeroCARD\_values\_1x1.dat  Copy this two file pdc\_calib\_2248.param pdc\_tzero\_per\_wire\_2248.param
 To this location: hallc\_replay/PARAM/SHMS/DC/ ~cp pdc\_calib\_run#.param pdc\_calib.param ~cp pdc\_tzero\_per\_wire\_run#.param pdc\_tzero\_per\_wire.param (hallc\_replay/{spec}/DC)

~Turn on the flag p\_using\_tzero\_per\_wire = 1

From the hallc\_replay directory replay the script again:

Look for this two variables in rootfile to validate the calibration

→ P.dc.{plane}.dist & P.dc.residual[i]



(biased by other plane)

| Planes | = "1u1" | = residual [0]  |
|--------|---------|-----------------|
| Planes | = "1u2" | = residual [1]  |
| Planes | = "1x1" | = residual [2]  |
| Planes | = "1x2" | = residual [3]  |
| Planes | = "1v1" | = residual [4]  |
| Planes | = "1v2" | = residual [5]  |
| Planes | = "2v2" | = residual [6]  |
| Planes | = "2v1" | = residual [7]  |
| Planes | = "2x2" | = residual [8]  |
| Planes | = "2x1" | = residual [9]  |
| Planes | = "2u2" | = residual [10] |
| Planes | = "2u1" | = residual [11] |

P.dc. {plane}.residualsExclPlane[i]

#### Drift-distance from chamber 1



#### Drift-distance from chamber 2



#### Residual of all the corresponding planes



#### P.dc.{plane}.residualsExclPlane[i]





Thank you

#### **Back up slide**

**Residual** is the difference between the final track position and the hit location obtained from individual drift chamber planes



Particle track