Update on KaonLT Experiment

Richard Trotta, Tanja Horn, Garth Huber, Pete Markowitz,

Stephen Kay, Vijay Kumar, Vladimir Berdnikov, Ali Usman, and the KaonLT collaboration

L/T separated data for verifying reaction mechanism

- Jlab 6 GeV data demonstrated the technique of measuring the Q² dependence of L/T separated cross sections at fixed x/t to test QCD Factorization
 - Consistent with expected scaling of $\sigma_{\rm L}$ to leading order $\rm Q^{-6}$ but with relatively large uncertainties
- Separated cross sections over a large range in Q² are essential for:
 - Testing factorization and understanding dynamical effects in both Q² and -t kinematics
 - Interpreting non-perturbative contributions in experimentally accessible kinematics

Meson Form Factors

- Pion and kaon form factors are of special interest in hadron structure studies
 - Pion lightest QCD quark system and crucial in understanding dynamic generation of mass
 - Kaon next simplest system containing strangeness
- Clearest case for studying transition from non-perturbative to perturbative regions
- Jlab 6 GeV data showed FF differs from hard QCD calculation
 - Evaluated with asymptotic valence-quark Distribution Amplitude (DA), but large uncertainties
- 12 GeV FF extraction data require:
 - measurements over a range of t, which allow for interpretation of kaon pole contribution

M. Carmignotto et al., PhysRevC **97**(2018)025204 F. Gao et al., Phys. Rev. D 96 (2017) no. 3, 034024

Experimental Determination of the π/K + Form Factor

- At larger Q², F²_{π+} must be measured indirectly using the "pion cloud" of the proton via the p(e,e'π⁺)n process
 - At small –t, the pion pole process dominates σ_1
 - In the Born term model, $F_{\pi^+}^2$ appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}^2(t) Q^2 F_\pi^2(Q^2,t)$$

Requirements:

- \circ Full L/T separation of the cross section isolation of σ_{I}
- Selection of the pion pole process
- Extraction of the form factor using a model
- Validation of the technique model dependent checks

L/T Separation Example

Review E12-09-011 (KaonLT) Goals

- Q² dependence will allow studying the scaling behavior of the separated cross sections
 - First cross section data for Q² scaling tests with kaons
 - Highest Q² for L/T separated kaon electroproduction cross section
 - First separated kaon cross section measurement above W=2.2 GeV
- t-dependence allows for detailed studies of the reaction mechanism
 - Contributes to understanding of the non-pole contributions, which should reduce the model dependence
 - Bonus: if warranted by data, extract the kaon form factor

Kaon LT - Data Collected

 The p(e, e'K⁺)Λ,Σ⁰ experiment ran in Hall C at Jefferson Lab over the fall and spring.

E (GeV)	Q ² (GeV ²)	W (GeV)	x	ε _{high} /ε _{low}
10.6/8.2	5.5	3.02	0.40	0.53/0.18
10.6/8.2	4.4	2.74	0.40	0.72/0.48
10.6/8.2	3.0	3.14	0.25	0.67/0.39
10.6/6.2	3.0	2.32	0.40	0.88/0.57
10.6/6.2	2.115	2.95	0.21	0.79/0.25
4.9/3.8	0.5	2.40	0.09	0.70/0.45

Experimental Details

- Hall C: k_e=3.8, 4.9, 6.4, 8.5, 10.6 GeV
- SHMS for kaon detection :
 - angles, 6 30 deg
 - o momenta, 2.7 6.8 GeV/c
- HMS for electron detection :
 - angles,10.7 31.7 deg
 - o momenta, 0.86 5.1 GeV/c
- Particle identification:
 - Dedicated Aerogel Cherenkov detector for kaon/proton separation
 - Four refractive indices to cover the dynamic range required by experiments
 - Heavy gas Cherenkov detector for kaon/pion separation

n	π _{thr} (GeV/c)	K _{thr} (GeV/c)	P _{thr} (GeV/c)
1.030	0.57	2.00	3.80
1.020	0.67	2.46	4.67
1.015	0.81	2.84	5.40
1.011	0.94	3.32	6.31

Analysis Phases

- 1. Calibrations 🗸
 - Calorimeter, aerogel, HG cer, HMS cer, DC, Quartz plan of hodo
 - Assure we are replaying to optimize our physics settings
- 2. Efficiencies and offsets Current Phase
 - Luminosity, elastics, heeps, etc.
- 3. First iteration of cross section
 - Bring everything together
- 4. Fine tune
 - Fine tune values to minimize systematics
- 5. Repeat previous step
 - Repeat until acceptable cross sections are reached
- 6. Possible attempt at form factor extraction
 - Fit the data to a model and iterate

Phase 1: Timing Windows

- The TDC coincidence spectra are the outputs from the L1ACC pre-triggers. The cuts are applied to the raw TDC spectra first.
- The process of applying cuts to the coincidence time spectra should be done only once reference time cuts are properly chosen.
- Removal all cuts to the raw spectra to see the entire raw spectrum including background
- The final step is to subtract the background surrounding the peaks in order to clean the spectrum up a bit.
 - Applying cuts to the raw spectrum to subtract these backgrounds will clean up these peaks after another replay is run.

Phase 1: Timing Windows Example

Phase 1: Detector Calibrations

- The online calibrations of the HMS cherenkov, SHMS HGCer, aerogel, and the hodoscopes were determined to be satisfactory for our current analysis.
- Future calibrations will be completed on run by run basis

Phase 1: Drift Chamber Calibrations

- The file to be calibrated must be replayed with the parameter "h(p) using tzero per wire=0" set in the relevant h(p)dc cut.param file for the replay script.
 - The branches for the calorimeter and relevant cherenkovs for the spectrometer you are analysing should be included if you want to utilise PID in the calibration.
- Once the replay is complete, the calibration script must be executed on the replayed root file.
- Parameter files are created that can be utilised in future replays.
- A second replay that utilises the new parameters from the calibration should be carried out to verify performance.

Residual

Phase 1: Calorimeter Calibrations

- Before calibrating, a replay of the run to be calibrated must be carried out.
 - The calorimeter calibration script is designed to calibrate the detector using electrons, as such a run where the spectrometer was set to negative polarity must be used.
- The calibration script requires as an input file with several thresholds and ranges defined as well as the initial gain constants in utilised in the replay.
- Once the script runs, it should produce two files.
 - The parameter file is the new set of gain constants generated by the calibration script, these can be utilised in subsequent replays for performance verification

hcal_pos_gain_cor=	12.32,	5.47,	8.95,	9.24,	8.84,	11.86,	11.18,	11.03,	8.61,	13.80,	12.67,	11.32,	8.71,
	9.60,	11.27,	6.92,	12.63,	7.40,	5.91,	7.90,	6.60,	7.94,	8.04,	9.50,	11.87,	10.49,
	22.12,	12.67,	15.18,	20.60,	14.22,	16.29,	20.54,	16.11,	19.04,	23.07,	13.46,	17.53,	17.92,
	30.32,	17.78,	21.81,	20.90,	19.61,	21.23,	23.94,	20.83,	22.49,	22.37,	21.80,	22.41,	18.85,
hcal_neg_gain_cor=	15.07,	14.61,	12.64,	10.65,	10.87,	12.09,	12.50,	16.52,	12.00,	11.14,	10.45,	10.95,	11.90,
	12.69,	12.09,	13.96,	11.43,	15.15,	14.53,	14.56,	14.64,	15.46,	11.57,	13.33,	11.71,	10.08,
	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,
	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,
	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,

Phase 1: Calorimeter Calibrations

- Many iterations were performed for all adequate runs
- There were tiny wiggles that can be seen in most runs
 - Vardan is aware (and many other groups) this is an ongoing issue

Importance of Luminosity Runs

E (GeV)	Q ² (GeV ²)	W (GeV)	x	Current (uA)	٤ _{high}	ε _{low}
10.6	5.5	3.02	0.40	5,15,30,45,50,55,70	0.53	
8.2	5.5	3.02	0.40	10,25,40,45,60		0.18
8.2	4.4	2.74	0.40	5,15,30,45,50,65		0.48
10.6	3.0	3.14	0.25	50,70	0.67	
6.2	3.0	2.32	0.40	50,60,65,70		0.57

Careful evaluations of the systematic uncertainties is important due to the $1/\varepsilon$ amplification in the $\sigma_{\rm L}$ extraction

Spectrometer acceptance, kinematics , and efficiencies are the primary contributors

Previous luminosity/tracking analysis

- Understanding efficiencies from luminosity scans has been ongoing with only one run period having been looked at
- Relative yield has been reduced to ~2% spread for carbon target
- Tracking efficiencies are a big contributor
 - At a given ¾ rate, HMS tracking efficiency is
 ~4% higher than that of the SHMS
 - HMS tracking efficiency is mostly independent of kinematic setting – not the case for the SHMS
 - SHMS tracking efficiency extrapolates to ~95% at 0 KHz – hadron tracking efficiency low by 4-6%

Phase 2: HGCer Challenges

- A hole in the HGCer will allow unwanted pions and accidentals
- An in depth analysis will be required for proper efficiency determination
- This hole is already causing visible issues

Conclusion

- E12-09-011 ran Fall 2018, Spring 2019
 - Also includes PionLT data from Summer 2019
- Currently in the second phase of analysis
- The calibrations are complete for all detectors
- Studies on tracking, efficiencies for luminosity for the immediate future
 - Nailing down our efficiencies is critical in diminishing our uncertainties for eventual cross section extraction
 - The hole in the HGCer will be a unique challenge for us to overcome which we look forward to figuring out.
- Acceptances and offsets will be the focus once this is complete

Extra Slides

Phase 2: PID Efficiencies

T. Horn et al., PhysRevC 97(2006)192001

σ_L is isolated using the Rosenbluth separation technique

 Measure the cross section at two beam energies and fixed W, Q², -t

 $\frac{d\sigma_{LT}}{dt}\cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt}\cos 2\phi$

- Simultaneous fit using measured azimuthal angle (φ) allows for extracting L, T, LT, and TT
 - \circ Careful evaluation of the systematic uncertainties is important due to the 1/ ϵ amplification in the σ_L extraction
- Must have magnetic spectrometers for such precision cross section measurements
 - This is only possible in Hall C at JLab

SHMS small angle operation

- Some issues with opening and small angle settings at beginning of run
 - \circ $\,$ SHMS at 6.01° $\,$
 - \circ $\,$ HMS at 12.7° $\,$

[12/17/18]

Aerogel Cherenkov detector in SHMS

~15 successful tray exchanges since Fall 2018

- Aerogel performance as expected
- Trays require some optimization before next use prevent damage from crane operation

KaonLT Event Selection

 Isolate Exclusive Final States through missing mass

$$M_x = \sqrt{(E_{det} - E_{init})^2 - (p_{det} - p_{init})^2}$$

- Coincidence measurement between kaons in SHMS and electrons in HMS
 - simultaneous studies of KΛ and KΣ⁰ channels...and a few others...
- Kaon pole dominance tests through

$$\frac{\sigma_L(\gamma^* p \to K^+ \Sigma^0)}{\sigma_L(\gamma^* p \to K^+ \Lambda)}$$

 $\circ \quad \mbox{Should be similar to ratio of coupling} \\ \mbox{constants $g^2_{\ \mbox{pKS}}/g^2_{\ \mbox{pKA}}$ in t-channel} \\$

Interesting Physics in the other channels

 Large difference in L/T ratio between p(e.e'π⁺)n and p(e,e'π⁺)Δ⁰ final states – G. Huber hclog #3640187

- Large increase in neutron missing mass peak at high epsilon is evidence of the pion-pole process at low Q^2 and small –t, which suggests $\sigma_L >> \sigma_T$
- Δ^0 exclusive longitudinal cross section expected to be at best $\sigma_L \sim \sigma_T$

Comparison of high and low ε [Q²=3.0, W=2.32, x=0.40]

- [10.6 Gev (high ε), 6.2 Gev (low ε)]
- Left ($\theta_{high} = 21.18, \theta_{low} = 16.28$)

6.2 GeV (low ε)

reaction plane

scattering plane

 (ω, q)

 $P_{\Lambda(\Sigma^{\circ})}$

Comparison of high and low ε [Q²=3.0, W=2.32, x=0.40]

- [10.6 Gev (high ε), 6.2 Gev (low ε)]
- Left ($\theta_{high} = 21.18, \theta_{low} = 16.28$)

10.6 GeV (high ε)

6.2 GeV (low ε)

Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε), 8.2 Gev (low ε)]
- Center ($\theta_{high} = 9.42, \theta_{low} = 6.89$)

Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε), 8.2 Gev (low ε)]
- Center ($\theta_{high} = 9.42, \theta_{low} = 6.89$)
- 10.6 GeV (high ε)

8.2 GeV (low ε)

Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε)]
- Right ($\theta_{high} = 6.65$)

Comparison of high and low ε [Q²=0.5, W=2.40, x=0.09]

- [4.9 Gev (high ε), 3.8 Gev (low ε)]
- Center ($\theta_{high} = 8.86, \theta_{low} = 6.79$)
- 4.9 GeV (high ε)

3.8 GeV (low ε)

KaonLT Sample Projections

• E12-09-011: Separated L/T/LT/TT cross section over a wide range of Q² and t E12-09-011 spokespersons: T. Horn, G. Huber, P. Markowitz

• JLab 12 GeV Kaon Program features:

- First cross section data for Q² scaling tests with kaons
- Highest Q² for L/T separated kaon electroproduction cross section
- First separated kaon cross section measurement above W=2.2 GeV

blue points from M. Carmignotto, PhD thesis (2017)

KaonLT: Projections for F_{K+}(Q²) Measurements

- E12-09-011: primary goal L/T separated kaon cross sections to investigate hard-soft factorization and non-pole contributions
- Possible K⁺ form factor extraction to highest possible Q² achievable at JLab
 - Extraction like in the pion case by studying the model dependence at small t
 - Comparative extractions of $F^2_{\ \pi}$ at small and larger t show only modest model dependence
 - larger t data lie at a similar distance from pole as kaon data

Possible extractions from 2018/19 run

P1: Calibration of HGC Detector (SHMS)

Showing the SPE in HGC for PMT1 FADC and fit it with a Gaussian function to get the mean of peaks. To see the second & third photo-electron, we fitted the scaled histogram with Poisson function and subtracted the higher photoelectron.

Plot between Run no & Calibration Parameters [PMT:1]

Run dependence of calibration parameters for the PMT1 to check the consistency of calibration.

HGC Timing Study

- In addition to main timing peak at +10ns, there is an unexpected second peak at -10ns.
- To better understand the origin of the unexpected peak, plot b/w Timing vs Amplitude.
 - 2nd peak corresponds to small pulses only.
- We also checked the tracking position in focal plane coordinates.
 - Interesting correlation between hit position and timing remains a mystery.

P1: SHMS Hodoscope Time Walk Calibration

In order to correct for time walk we:

- Plot ADC amplitude against TDC ADC time
- Fit This Function: $f_{TW} = c_1 + \frac{1}{\left(\frac{a}{TDC_{Thrs.}}\right)^{c_2}}$
- Subtract second term
- Check parameter stability over run periods 6600 - 8000, stable within error
- Plots from PMT 2+ on 1x plane, similar for others

