A First look @ Tracking Analysis

Ali Usman

Outline

Introduction

Track Selection

Track Parameters

Best (Golden) Track Selection

- BestTrackSimple()
- BestTrackUsingScin()
- BestTrackUsingPrune()
- Tracking Efficiency
- Outlook

Introduction

- > Two chambers in each spectrometer.
- Each chamber has six planes which are 1 cm apart from each other.
- Each plane consist of anode sense wires which are 1 cm apart.
- Set of cathode field wires sandwich the anode wires with potential range (-1800 V to -2500 V).
- > Planes are U, U', X, X', V, V' for first chamber and opposite for second.
- X planes are horizontal where as U and V planes are 60° on either side.
- > Chambers are filled with mixture of argon and ethane.

Track Selection

- > Hit is a signal from a sense wire in the DC plane.
- ► At least 5 out of 6 planes must fire for each chamber.
- > Cluster of hits are called "space points".
- Combo (Hits from a pair of unlike planes) gives information for space point.
- "Space point criterion" is a radius of circle around space point in which all space points are considered as a single space point.
- If combo is out of the range of space point criterion then program creates a new space point.
- A "stub" (track candidate) is combination of space point information from all planes.

Track Parameters

The stub from two chambers having slopes and positions which point to each other are linked together to form a track.

 \succ For multiple tracks, the one with lowest χ^2 for the fit is selected.

Parameter	HMS	SHMS
Min. Hits	4	4
Max. Hits	35	25
Min. Combos	3	3
SP Criteria	1,1	1.2, 1.2
X Stub	100 mm	100 mm
Y Stub	20 mm	20 mm
X' Stub	1 rad	1 rad

Best Track Selection

Hcana gives three different types of algorithm for selection of best track.

- BestTrackSimple ()
 - \succ Old algorithm which only looks at χ^2
- BestTrackUsingScin()

Vladas' algorithm which looks at calorimeter and hodoscopes as well.

BestTrackUsingPrune()

Peter's improvement which looks at additional pruning variables.

BestTrackSimple ()

> The algorithm looks at all the tracks and chooses one which has best χ^2 as a final track.

 $\succ \chi^2$ is given by

$$\chi^2 = \frac{DC_{wc} + DC_{tc}}{\sigma_{DC}^2}$$

DC_{wc} → wire co-ordinate of stub
 DC_{tc} → track co-ordinate of stub
 σ_{DC}^2 → wire chamber resolution of the plane

BestTrackUsingScin ()

Comparison b/w two techniques

[1]Vladas Thesis p56

BestTrackUsingPrune ()

Parameter	Default value
Prune_xp	0.2
Prune_yp	0.2
Prune_ytar	20
Prune_delta	30
Prune_beta	30
Prune_df	1
Prune_chibeta	100
Prune_npmt	6
Prune_fptime	1000
Prune_dipoleExit	0

Tracking Efficiency

> The tracking efficiency is defined as follows

$$\epsilon_{tracking} = \frac{Trig \& PID \& TR}{Trig \& PID}$$

➢ Trig → No. of Triggered events
➢ PID → No. of events after PID cut
➢ TR → No. of events with good track

Outlook

> Need to understand pruning algorithm in detail.

- Start to get the efficiency plots for the luminosity scans using default parameters.
- > Will tweak the parameters and check the effect on efficiency.
- > Will look at physics runs.

Backup Slides

Drift Chambers

Co-ordinate System

Lab Co-ordinate System

z-axis is parallel to beamline.
y-axis is vertical.
x-axis is perpendicular.

Transport Co-ordinate System

z-axis points towards
 Spectrometer.
 x-axis is vertical
 y-axis is perpendicular

DC Calibrations

- The time in which ionized electrons reach the nearest sense wire is known as drift time.
- This time is proportional to the distance of track from the sense wire.
- Drift time is taken from TDCs.
- > Drift distance distribution must be flat for each plane.
- Residual is the difference between final track position and the hit location obtained from individual planes.
- Residual for each plane should be narrow peak centered at zero.

DC Calibrations

