ann LT Status Update

April 15th, 2020

Richard Trotta

- Your own outputs

Analysis procedure A

l Your own scripts

?

DAQ —» decoder —9 hcana —P ROOT —» analysis —» kaonlt python package

I

Currently doing analysis (after the initial replay) is a free-for-all ROOT python excel
We wanted a systematic way for our group to analyze the data (csv)
ROQT gives me a headache so | began doing my analysis in

python

| developed a python package to initially just apply cuts, but

quickly Stephen and | expanded this into a full data analysis

procedure

Python Advantages

Code is very readable and syntax is easy to learn

Debugging is a cinch
o Large community from a myriad of different fields

e Vast array of third party packages
o NumPy, SciPy, Numeric, etc.

Built in types and tools; diminishing C++ woes
Runs on virtually every major platform used today
Python programs run in exact same manner irrespective of platform

See Eric Pooser’s 2018 talk for more details...
o https://redmine.jlab.org/projects/podd/wiki/Workshop2018

e Easytograbdatafrom files to use as inputs
o Thisisthe central idea behind the kaonlt package

https://redmine.jlab.org/projects/podd/wiki/Workshop2018

KaonLT package capabilities

e Easily apply cuts with dynamic cut values
o e.g.p_track_lumi_before = c.add_cut(P_dc_ntrack,'p_track_lumi_before")
o Cutvalues are grabbed from a CSV database (more on this later)
e Adjust bins and create 2D plots easily in python
e Ifyourather ROOT...
o One cantrivially create slimmed ROOT files of post-analysis plots (See Stephen’s talk)
e Define equations and use with easy
o e.g.mm = missmass(kaon)
o Stillunder development

UTIL_KAONLT Structure

e Correctdirectory structure is required for kaonlt package to function properly
e Directories of importance for kaonlt
o DB, scripts, bin

config RS README . md ROOTFiles
DB online_archive R EERDSIRUMEREN scripts

r ~/Analysis/hallc_replay 1t/UTIL_KAONLT> |}

kaonyield kinematics luminosity pid replay summaries CUTS PARAM

0 trottar ~/Analysis/hallc_replay 1t/UTIL KAONLT/DB> j§

ol fe

.py kaonlt.py _ pycache _

ttar ~/Analysis/hallc_replay 1t/UTIL_KAONLT/bin/python/kaonlt> |}

bin/python/kaonlt

e Thebinfileis the temporary location of the kaonlt package
o Once package published (i.e. pip-able) this directory will be removed
e Inbin/python/kaonlt/

o kaonlt.py is where all the methods of importance are defined
o Pathingis also defined here (need to make more flexible in the future)

init .py kaonlt.py _ pycache _

trottar ~/Analysis/hallc_replay_ Llt/UTIL_KAONLT/bin/python/kaonlt> |J

kaonyield kinematics Tluminosity pid replay summaries

scripts

trottar ~/Analysis/hallc_replay 1t/UTIL_KAONLT/scripts> [}

e Scripts are where the analysis scripts are located
o e.g. lumi, prod, elastics, etc.
This directory is pretty much free reign depending on your needs
e Analysis scripts using kaonlt package will need to have a few lines of code to call the

package correctly.....

Array name must match
what is defined in
DB/CUTS/general/

(e.g. H.cal.etotnorm leaf is
defined as
H_cal_etotnorm)

import uproot as up
sys.path.insert (0, 'path to/bin/python/')
import kaonlt as klt

Convert root leaf to array with uproot
array = tree.array(

Uproot: root to numpy array

Not required for applying cuts, but required for converting back to root files
r = klt.pyRoot()

fout =
c = klt.pyPlot(None) # See below for pyPlot class definition
readDict = c.read dict(fout) # read in run type cuts file and makes dictionary

This method calls several methods in kaonlt package. It is required to create properly formated

dictionaries. The evaluation must be in the analysis script because the analysis variables, i.e. the
leaves of interest, are not defined in the kaonlt package. This makes the system more flexible

overall, but a bit more cumbersome in the analysis script. Perhaps one day a better solution will be
implimented.

def make cutDict(cut,inputDict=None):

global c

klt.pyPlot(readDict)
c

c
X .w_dict(cut)

** Template analysis
Only for first key'of dictionary Scrlpt Creator IS In the
it = O works

Update dictionary with cuts (as strings) from readDict
for key,val in readDict.items():
if key == cut:
inputDict.update({key : {}})

Evaluate strings to cut values. Creates a dictionary in a dictionary...dict-ception
for i,val in enumerate(x):
tmp = x[i]
Checks for removed leaves
if tmp ==
continue
else:
inputDict[cut].update(eval(tmp))

return inputDict

cutDict = make cutDict()

cutDict = make cutDict(,cutDict)

Continue this for all run type cuts required Deﬁne CUtS

---> If multple run type files are required then define a new run type file altogether. Do not try

to
ain run tvpe files. It can be done, but is computationally wasteful and pointles

To apply cuts to array...
c.add cut(array,)

CUTS PARAM

Database

trottar ~/Analysis/hallc_replay 1t/UTIL_KAONLT/DB> Jj

This is the central hub for all cut definitions, and cut values
1. The kaonlt package grabs the cuts from DB/CUTS/run_type
2. These cuts are broken into general cuts defined in DB/CUTS/general
3. Oncetherequired general cuts are defined, the package searches DB/PARAM/ for
the correct cut values (dependent on run number)

general run_type

trottar ~/Analysis/hallc_replay 1t/UTIL_KAONLT/DB/CUTS> |}

trottar ~/Analysis/hallc_replay 1t/UTIL_KAONLT/DB/PARAM> |}

Lumi.cuts pSing prod.cuts
.cuts pi Ff LS test
nSing prod.cuts pSing optics.cuts test.cuts

Example

trottar ~/Analysis/hallc_replay 1t/UTIL_KAONLT/DB/CUTS/run_type> [}

Define the cuts of interest in DB/CUTS/run_type/coin_prod.cuts

HHUHHH A

COIN picut

HAH A

coin_epi_cut = pid.p_picut+accept.delta+accept.h_pfp+accept.p_pfp

#

coin_epi_cut_orig = pid.p_picut+accept.delta+accept.h_pfp+accept.p_pfp-pid.p_picut.P_cal_etotnorm-pid.p_picut.H_cer_npeSum

Breaking it down...

e pid.p_picut+accept.delta+accept.h_pfp+accept.p_pfp are added cuts
o Looking at pid.p_picut...pid tells kaonlt the type of general cut to be added, p_picut tells kaonlt the
specific cut in the general cuts to be added (similarly for accept.delta)
e -pid.p_picut.P_cal_etotnorm-pid.p_picut.H_cer_npeSum are
Looking at -pid.p_picut.P_cal_etotnorm...pid.p_picut are the same as above but now subtracted.
P _cal etotnorm tells kaonlt the detector of interest to subtract
To summarize “+” means add cuts, , any combination of cuts can be achieved from this

coin time.cuts

Example

rottar ~/Analysis/hallc_replay 1t/UTIL_KAONLT/DB/CUTS/general> |

Define the general cuts in DB/CUTS/general/pid.cuts

HUHH S

SHMS pid cuts

HUt#H S

p_picut = {"H_cal_etotnorm" : (H_cal_etotnorm > pid.P_picut_H_cal)},{"H_cer_npeSum" : (H_cer_npeSum > pid.P_picut_H_cer)},
{"P_gtr_beta": ((abs(P_gtr_beta)-1) < pid.P_picut_P_beta)}, {"P_hgcer_npeSum" : (P_hgcer_npeSum > pid.P_picut_P_hgcer)},
{"P_aero_npeSum" : (P_aero_npeSum > pid.P_picut_P_aero)}, {"P_cal_etotnorm" : (P_cal_etotnorm > pid.P_picut_P_cal)}

Breaking it down...
e pid.p_picut (from the last slide)
o Kaonlt goesinto DB/CUTS/general/pid.cuts and selects the specific cut (i.e. p_picut)
o Above you cansee all the defined detector cuts
e Ifl wanted to subtract the HMS cal cut | would simply put -pid.p_picut.H_cal_etotnormin

DB/CUTS/run_type/coin_prod.cuts
e Thevariable names (e.g. pid.P_picut_P_cal) are grabbed from DB/PARAM

Example

trottar ~/Analysis/hallc_replay 1t/UTIL KAONLT/DB/PARAM

Define the cuts values in DB/CUTS/PARAM/PID_Parameters.csv

Run_Start Run End H ecut H cal H ecut P cal H ecut H beta H ecut H cer H_picut H cal H picut P_cal H_picut H beta H_picut H cer H_hac

0 9999 0.7 0.7 0.3 15 0.7 0.7 0.3 15 0.7
»
Breaking it down...

e DB/CUTS/general/pid.cuts (from the last slide)
o Thevariable pid.P_picut_P_cal specifies where kaonlt should get the cut value

o Similar to DB/CUTS/run_type...pid tells kaonlt which parameter file and P_picut_P_cal tells kaonlt the
cut value

o Thevalue grabbed is based off the run number

Bring it all together

e This may seem like a lot, but the beauty is that all of this is done behind the scenes.

e Asauseryouwill only need to edit...
o Theanalysis scriptin scripts/
o The cut definitions in DB/CUTS/run_type/
o Thecutvaluesin DB/PARAM
This means if something goes wrong it is only in one of three places
All of your final analysis can be converted into super slim ROOT files
o Multiple runs can be chained together with ease as well

e Therefore the kaonlt package provides...
o Easydebugging
o More flexibility applying cuts on a run by run basis
o Easier to see which cuts have been applied
o Slimmer and less repetitive scripts
o Verysmall ROOT files for easy tradability among groups

See Stephen’s talk for even more details

Why such an elaborate cut procedure?

Python is very slow compared to C++ but there are ways to shorten this gap

One could easily apply cuts like...
forvalinarr:
if cutl:
if cut2:
new_arr.append(val)

But this is very slow.... (~6.1x102 seconds for 50k events)

Once could speed this up.... (~5.7x102 seconds for 50k events)

new_cut = [val for val in arr
if cutl
if cut2]

But even this is slow compared to C++
There are many faster ways, one of which is array indexing

e Arrayindexingis how my cuts are applied (~3.5x10* seconds for 50k events)
new_arr = arr[cutl & cut2]

Current state

Only tracking cuts still need to be defined
Farm testing needs to be done
Need to fix some minor naming schemes (e.g. gtr_th->gtr_xp)
Better way of applying pid cuts when there is a max and min cut
The kaonlt package is still in DEBUG mode.
o Once all cuts are in this will be changed
o |wantto make it super obvious where an issue arises and how to fix it by including
detailed error messages.
Currently only 1D arrays are accepted as cut inputs, but want to expand to
multidimensional arrays as well
o Note: multidimensional arrays still work, they just need to be looped over in the
analysis script

Looking to the future

e Arequirements.txt files needs to be included to assure python package
requirements are met

o Alsomay need to check ROOT versions (ROOT 6.14+ is required for most
pyROOT type packages)

Comprehensive speed test
e Add commonly used equations to kaonlt (e.g. missing mass)
Include a template analysis script creator to assure proper syntax, plus
convenience
e Pathingin kaonltis rather rigid so this needs to be expanded
o After this, publish kaonlt package so it can be pip-ed and remove bin directory
e (Specific to KaonLT group), incorporate Bill's code into the framework

