
Kaon LT Status Update
April 15th, 2020

Richard Trotta

Analysis procedure

● Currently doing analysis (after the initial replay) is a free-for-all
● We wanted a systematic way for our group to analyze the data
● ROOT gives me a headache so I began doing my analysis in

python
● I developed a python package to initially just apply cuts, but

quickly Stephen and I expanded this into a full data analysis
procedure

ROOT python excel
(csv)

DAQ decoder hcana ROOT analysis kaonlt python package

Your own scripts

Your own outputs

Python Advantages

● Code is very readable and syntax is easy to learn
● Debugging is a cinch

○ Large community from a myriad of different fields

● Vast array of third party packages
○ NumPy, SciPy, Numeric, etc.

● Built in types and tools; diminishing C++ woes
● Runs on virtually every major platform used today
● Python programs run in exact same manner irrespective of platform
● See Eric Pooser’s 2018 talk for more details…

○ https://redmine.jlab.org/projects/podd/wiki/Workshop2018

● Easy to grab data from files to use as inputs
○ This is the central idea behind the kaonlt package

https://redmine.jlab.org/projects/podd/wiki/Workshop2018

KaonLT package capabilities

● Easily apply cuts with dynamic cut values
○ e.g. p_track_lumi_before = c.add_cut(P_dc_ntrack,"p_track_lumi_before")

○ Cut values are grabbed from a CSV database (more on this later)

● Adjust bins and create 2D plots easily in python
● If you rather ROOT…

○ One can trivially create slimmed ROOT files of post-analysis plots (See Stephen’s talk)

● Define equations and use with easy
○ e.g. mm = missmass(kaon)

○ Still under development

UTIL_KAONLT Structure

● Correct directory structure is required for kaonlt package to function properly
● Directories of importance for kaonlt

○ DB, scripts, bin

bin/python/kaonlt

● The bin file is the temporary location of the kaonlt package
○ Once package published (i.e. pip-able) this directory will be removed

● In bin/python/kaonlt/
○ kaonlt.py is where all the methods of importance are defined

○ Pathing is also defined here (need to make more flexible in the future)

scripts

● Scripts are where the analysis scripts are located
○ e.g. lumi, prod, elastics, etc.

● This directory is pretty much free reign depending on your needs
● Analysis scripts using kaonlt package will need to have a few lines of code to call the

package correctly…..

Import uproot and kaonlt

Uproot: root to numpy array

Required for fastest cut
method

Define cuts

Apply cuts

** Template analysis
script creator is in the
works

Array name must match
what is defined in
DB/CUTS/general/
(e.g. H.cal.etotnorm leaf is
defined as
H_cal_etotnorm)

Database

This is the central hub for all cut definitions, and cut values
1. The kaonlt package grabs the cuts from DB/CUTS/run_type
2. These cuts are broken into general cuts defined in DB/CUTS/general
3. Once the required general cuts are defined, the package searches DB/PARAM/ for

the correct cut values (dependent on run number)

Example

Define the cuts of interest in DB/CUTS/run_type/coin_prod.cuts

##############
COIN picut
##############
coin_epi_cut = pid.p_picut+accept.delta+accept.h_pfp+accept.p_pfp
#
coin_epi_cut_orig = pid.p_picut+accept.delta+accept.h_pfp+accept.p_pfp-pid.p_picut.P_cal_etotnorm-pid.p_picut.H_cer_npeSum

Breaking it down…

● pid.p_picut+accept.delta+accept.h_pfp+accept.p_pfp are added cuts
○ Looking at pid.p_picut...pid tells kaonlt the type of general cut to be added, p_picut tells kaonlt the

specific cut in the general cuts to be added (similarly for accept.delta)
● -pid.p_picut.P_cal_etotnorm-pid.p_picut.H_cer_npeSum are subtracted cuts

○ Looking at -pid.p_picut.P_cal_etotnorm...pid.p_picut are the same as above but now subtracted.
P_cal_etotnorm tells kaonlt the detector of interest to subtract

To summarize “+” means add cuts, “-” means subtract cut, any combination of cuts can be achieved from this

Example

Define the general cuts in DB/CUTS/general/pid.cuts

##############
SHMS pid cuts
##############
p_picut = {"H_cal_etotnorm" : (H_cal_etotnorm > pid.P_picut_H_cal)},{"H_cer_npeSum" : (H_cer_npeSum > pid.P_picut_H_cer)},
{"P_gtr_beta" : ((abs(P_gtr_beta)-1) < pid.P_picut_P_beta)}, {"P_hgcer_npeSum" : (P_hgcer_npeSum > pid.P_picut_P_hgcer)},
{"P_aero_npeSum" : (P_aero_npeSum > pid.P_picut_P_aero)}, {"P_cal_etotnorm" : (P_cal_etotnorm > pid.P_picut_P_cal)}

Breaking it down…

● pid.p_picut (from the last slide)
○ Kaonlt goes into DB/CUTS/general/pid.cuts and selects the specific cut (i.e. p_picut)
○ Above you can see all the defined detector cuts

● If I wanted to subtract the HMS cal cut I would simply put -pid.p_picut.H_cal_etotnorm in
DB/CUTS/run_type/coin_prod.cuts

● The variable names (e.g. pid.P_picut_P_cal) are grabbed from DB/PARAM

Example

Define the cuts values in DB/CUTS/PARAM/PID_Parameters.csv

Breaking it down…

● DB/CUTS/general/pid.cuts (from the last slide)
○ The variable pid.P_picut_P_cal specifies where kaonlt should get the cut value
○ Similar to DB/CUTS/run_type...pid tells kaonlt which parameter file and P_picut_P_cal tells kaonlt the

cut value
○ The value grabbed is based off the run number

● This may seem like a lot, but the beauty is that all of this is done behind the scenes.
● As a user you will only need to edit…

○ The analysis script in scripts/

○ The cut definitions in DB/CUTS/run_type/

○ The cut values in DB/PARAM

● This means if something goes wrong it is only in one of three places
● All of your final analysis can be converted into super slim ROOT files

○ Multiple runs can be chained together with ease as well

● Therefore the kaonlt package provides…
○ Easy debugging

○ More flexibility applying cuts on a run by run basis

○ Easier to see which cuts have been applied

○ Slimmer and less repetitive scripts

○ Very small ROOT files for easy tradability among groups

See Stephen’s talk for even more details

Bring it all together

Why such an elaborate cut procedure?

● Python is very slow compared to C++ but there are ways to shorten this gap
● One could easily apply cuts like…

for val in arr:
if cut1:

if cut2:
new_arr.append(val)

● But this is very slow…. (~6.1x10-2 seconds for 50k events)

● Once could speed this up…. (~5.7x10-2 seconds for 50k events)

new_cut = [val for val in arr
if cut1
if cut2]

● But even this is slow compared to C++
● There are many faster ways, one of which is array indexing
● Array indexing is how my cuts are applied (~3.5x10-4 seconds for 50k events)

new_arr = arr[cut1 & cut2]

Current state

● Only tracking cuts still need to be defined
● Farm testing needs to be done
● Need to fix some minor naming schemes (e.g. gtr_th->gtr_xp)
● Better way of applying pid cuts when there is a max and min cut
● The kaonlt package is still in DEBUG mode.

○ Once all cuts are in this will be changed

○ I want to make it super obvious where an issue arises and how to fix it by including

detailed error messages.

● Currently only 1D arrays are accepted as cut inputs, but want to expand to
multidimensional arrays as well
○ Note: multidimensional arrays still work, they just need to be looped over in the

analysis script

Looking to the future

● A requirements.txt files needs to be included to assure python package
requirements are met
○ Also may need to check ROOT versions (ROOT 6.14+ is required for most

pyROOT type packages)

● Comprehensive speed test
● Add commonly used equations to kaonlt (e.g. missing mass)
● Include a template analysis script creator to assure proper syntax, plus

convenience
● Pathing in kaonlt is rather rigid so this needs to be expanded

○ After this, publish kaonlt package so it can be pip-ed and remove bin directory

● (Specific to KaonLT group), incorporate Bill’s code into the framework

