
EDTM Study Report

Jacob Murphy

2022/06/28

Over the course of the 2021 Pion LT experiment, several studies were conducted
to examine strange behavior in the Electronic Dead Time Measurements (EDTM).
For physics production in this experiment, EDTM worked as expected. However,
in calibration runs without coincidence triggers, Total Live Time (TLT) calculations
were found to be greater than 1, leading to several studies.

Branches Used for Live Time Calculations:

• T.coin.p(h)EDTM tdcTimeRaw

• fEvtHdr.fEvtType

• T.coin.pTRIG() ROC1(2) tdcTime

• H.bcm4a.AvgCurrent

• P.BCM4A.scalerCurrent(Charge)

• P.1MHz.scalerTime

• P.pTRIG.scaler

• P.EDTM.scaler

• P.pL1ACCP.scaler

1 TDC Timing
In the T tree, for a given replay, there are a series of TDC variable branches. For each
trigger, there are TDC branches for ROC1 and ROC2. For each of these, there is a
time and time-raw (or raw time and non-raw time). The raw time is not reference-time
subtracted and has channels with each channel equating to a fraction of a nanosecond.
In the non-raw time, the TDC spectrum IS reference-time subtracted. Within each
trigger’s non-raw time spectrum, there should be a self-tming peak that corresponds
to events of that trigger type. Cutting along this peak allows for selecting events from
individual triggers.

There are additional TDC branches for EDTM events. In the COIN DAQ, EDTM
events from either arm are combined into one histogram and saved. There is a location
for each arm (pEDTM and hEDTM). Paralleling the other TDCs, there are also time
and time-raw branches. In the non-raw time, there is indeed a peak containing most
EDTM events. The events, or grass, outside of this peak are dependent on delays
in the events being received due to front-end build-up. This increases with higher
rates. Typically, the SHMS has higher rates than the HMS and therefore there is



higher ’grass’ in the pEDTM non-raw time as compared to hEDTM for the same
run. This is also a sign of some electronic dead time. The events outside of the
non-raw time peak are NOT to be cut. Attempting to do so results in severely low
and unrealistic live times, indicating there are valid and good EDTM events in the
’grass’. Additionally, grass-events in one arm are often within the non-raw time peak
of the other. Therefore, cuts along the non-raw time for selecting EDTM events are
not beneficial.

The EDTM TDC raw time spectrum is not reference-time subtracted, which is
very important. Because EDTM events are always of every trigger type, they appear
in the self-timing peak of every pTRIG TDC non-raw time spectrum. To select EDTM
events from specific triggers, the self-timing peaks cannot be used. An alternative is
using these raw time EDTM spectra. Each trigger has a range of acceptance. The
width is well-defined to be 300 channels for every trigger, corresponding to the 20
ns window of acceptance for each trigger. Additionally, the higher the channel, the
earlier the event arrived. This allowed for conformation of the timing-order for the
triggers in this experiment:

• pTRIG 6

• pTRIG 5

• pTRIG 3

• pTRIG 1

• pTRIG 2

• pTRIG 4

Unfortunately, this TDC spectrum is also limited in allowing for cuts on EDTM.
The COIN, 3/4, and ELREAL triggers overlap within each pair. To properly extract
the trigger origin of a given EDTM event, we must rely on event types.

2 Event Types
When Brad setup the trigger apparatus for this experiment, he enabled three trigger
bit types:

• Bit 1: SHMS

• Bit 2: HMS

• Bit 3: COIN

These bit-types then feed into the seven event types found in the event handler:

• Event Type 1: SHMS (Bit 1)



• Event Type 2: HMS (Bit 2)

• Event Type 3: SHMS+HMS (Bit 1+2)

• Event Type 4: COIN ONLY (Bit 3)

• Event Type 5: SHMS COIN ONLY (Bit 1+3)

• Event Type 6: HMS COIN ONLY (Bit 2+3)

• Event Type 7: ALL COIN (Bit 1+2+3)

Event types 3-7 all involve multiple triggers, though not necessarily multiple bit
types. If an event passes through trigger logic AND meets the prescale condition, it
is then given a bit type. If only pTRIG5 were enabled, all events would be Type 4
with Bit value of 3. Though the events had to have passed the pTRIG1 and pTRIG4
trigger logic to become a COIN, the prescale condition is never met. If, however,
the single-arm triggers were not prescaled at all either, then COIN events would all
be type 7. With prescaled single arms, COIN events are a mixture of 4-7, with 5-7
being far less likely the higher the prescales. Event Type 3 only occurs in single-arm
running or a prescaled COIN trigger. Applying cuts along these event types, we can
determine which trigger an EDTM event passed through. Differentiating between
the COIN Event Types (4-7) is not consequential because all EDTM are COIN when
COIN triggers are enabled (see 4). For Event Type 3, whatever is the earlier single-
arm trigger that is enabled, then it will save all of that event type. For example, in
Luminosity and HeeP Singles runs, we enable pTRIG2 and pTRIG4 only. Because
pTRIG2 is the earlier trigger, Event Types 1 and 3 are SHMS and only Event Type
2 is HMS. With this information, the combined EDTM events in the COIN DAQ can
be separated into individual arm EDTM events.

3 EDTM Sent and Accepted
Before moving on to define the Total Live Time, it is important to understand how
EDTM Sent and EDTM Accepted are defined. The ’sent’ value refers to how many
EDTM pulses were generated by the pulse clock during the experiment run. This
value is tracked by the EDTM scaler variable in the TSP and TSH trees, where we
typically use the former. We also apply current cuts to this scaler variable to trim out
beam trips and ramps, where charge accumulated is unreliable, and beam downtime,
where the TLT is effectively 100% artificially. At present, we use the BCM4A variable
to determine the current cuts. The scaler events, which iterate every 1000 trigger
events or 2 seconds, are a running counter for charge, time, and scaler events. To
apply current cuts to EDTM sent, we must subtract from the end-of-run total the
sum of EDTM scaler counts from all cut scaler events. This final count is what is
used as EDTMsent or EDTMscaler.



EDTM pTRIG1 pTRIG2 pTRIG3 pTRIG4 pTRIG5 pTRIG6
Channel Start 3100 2755 3250 2600 3650 3810
Channel Stop 3400 3055 3550 2900 3950 4110

Tab. 1: Channel Ranges in T tree for pEDTM TDC Time Raw

For EDTM accepted, we use the raw time EDTM TDC histograms. All events
where the raw time is 0 are cut. Additionally, current cuts are again placed as
before, now using the T tree’s BCM4A variable. Cuts are then placed in the 300-
channel width regions corresponding to all active triggers. These regions are defined
as shown in Table 1. Finally, cuts are placed along event types. For PionLT single-
arm calibration runs, only pTRIG2 and pTRIG4 were used. In this instance, Event
Type 2 is associated with pTRIG4 and Event Types 1 AND 3 are associated with
pTRIG2.

4 Prescaling
An event passing through the trigger logic is saved by the DAQ only if two conditions
are met:

• Prescale conditions are met

• DAQ is not busy

The DAQ is busy when an event is being saved, hence only one event may be
saved at a time. This is the CPUDT. If multiple triggers are met at the same time,
the timing order will determine which is saved. Note that the COIN triggers are
intentionally given the highest priority by Brad.

If an event is triggered within the time window of the DAQ saving the previous
event, it will not be recorded (hence the dead-time). Physics events are effectively
random in timing, so the EDTM can be used to track this deadtime as its origin is a
pulse clock.

The issue with EDTM and prescaling is that the EDTM pulses through every
trigger at once. Because of the trigger timing, only one event is ever recorded per
pulse (this is debatable from EDTM study 3 where triple pulses were recorded, but it
was never reproducible). This means that, if prescale conditions are met, the earliest
trigger always records the EDTM event. If the earliest trigger’s prescale condition is
not met, then and only then can the DAQ save the EDTM pulse into the next-timed
trigger (assuming that trigger’s prescale conditions are also met). In other words,
only EDTM events that are ’rejected’ by eariler trigger prescale conditions can be
recorded by later triggers.

This issue is avoided, however, by our physics production. A COIN trigger is
always used in production, and it always has a prescale of 0, meaning every event
is accepted to the DAQ. This means the EDTM pulses can never be registered by
an trigger other than the COIN trigger. It also means that any difference between



the accepted and sent EDTM events is due to dead-time. This is not the case in
singles-running.

During HeeP singles and Luminosity scans, there is no COIN trigger. Usually,
the triggers that are used (pTRIG2 and pTRIG4) will be prescaled. From how our
calibration runs are set, almost always the SHMS trigger, pTRIG2, is at a higher
rate and higher prescale. It is also the earlier trigger. As discussed earlier, the
later triggers only can save EDTM events that are rejected by the earlier triggers.
Therefore, pTRIG 4 will only save EDTM events when pTRIG2’s prescale condition
is not met.

The first issue with this system is that the majority of the EDTM pulses will be
prescaled away (assuming a factor grater than 1 is used). To compensate for this,
Brad designed the EDTM GUI to set the EDTM scaler (sent) rate to be equal to
the desired rate multiplied by the lowest prescale factor. In physics production, the
lowest prescale factor is always 1 so EDTM desired and sent rates are equal. For
singles runs, these rates are rarely equal.

This means that if we simplistically say:

TLT =
EDTMacc

EDTMsent

(1)

then our TLT will be abysmal thanks to the prescale conditions. A prescale-
correction must be applied to account for this, but it is not a simple as using the
lowest prescale factor. EDTM events will pass through both trigger’s prescales, unless
the earliest trigger is not prescaled. TLT is then given by:

TLT# =
EDTM#

acc

C# ∗ EDTMsent

(2)

where # refers to pTRIG# and C# is a correction factor to account for prescaling.
The value of C# is dependent on the prescale factors PSF# for pTRIG# and all
earlier triggers. Note that EDTMsent is NOT dependent on the trigger.

Assuming that there is only one active trigger per Bit type:

•
C6 =

1

PSF 6
(3)

•
C5 =

1

PSF 5
(4)

•
C3 =

1

PSF 3
− 1

PSF 3 ∗ PSF 6
(5)

• For a 3/4 run:

C1 =
1

PSF 1
− 1

PSF 1 ∗ PSF 3
− 1

PSF 1 ∗ PSF 6
(6)



For a normal production run:

C1 =
1

PSF 1
− 1

PSF 1 ∗ PSF 5
(7)

•
C2 =

1

PSF 2
− 1

PSF 2 ∗ PSF 3
(8)

• For Electron Singles:

C4 =
1

PSF 4
− 1

PSF 4 ∗ PSF 2
(9)

For Normal Production:

C4 =
1

PSF 4
− 1

PSF 4 ∗ PSF 1
− 1

PSF 4 ∗ PSF 5
(10)

It is important to note that these correction factors are due to the EDTM pulse
affecting every trigger at once. Each EDTM pulse is one ’real’ event, so as long as
the event is recorded in one of the triggers, there is no deadtime. This behavior is
the same as with a COIN trigger, which does not save the single-arm versions of its
event.

5 Errors
A reoccurring issue we found was TLT > 1 in single-arm analysis. The correction
factor C# has improved our calculations immensely. The final step is to apply ap-
propriate error to the TLT. Using binomial errors (and Bill Henry), the error can be
written as:

δTLT

TLT
=

√
EDTM#

acc ∗ (1− EDTM#
acc

EDTMsent
)

C# ∗ EDTMsent

(11)


	TDC Timing
	Event Types
	EDTM Sent and Accepted
	Prescaling
	Errors

