Project

General

Profile

ML beam test PID Meetings » History » Revision 43

Revision 42 (Richard Trotta, 05/31/2024 11:06 AM) → Revision 43/73 (Richard Trotta, 05/31/2024 11:13 AM)

{{>toc}} 

 h1. ML beam test PID Meetings 

 --- 

 h2. Summer 2024 

 --- 

 h3. May 28th, 2024 

 * Darren ran with Python3.9 
 * Docker (containerization) Definition 
 ** Containerization is a technology that allows developers to package and run applications along with all their dependencies in isolated environments called containers. This ensures that the application runs consistently across different computing environments, from a developer's laptop to testing, staging, and production. 
 ** Docker is a popular platform that simplifies containerization. It provides tools to create, deploy, and manage containers. With Docker, developers can write code locally, share their work with colleagues, and deploy to production in a seamless and efficient manner. Docker containers are lightweight, fast, and portable, making them ideal for modern software development and deployment. 

 * "A Crash Course for Summer Research":https://drive.google.com/file/d/1-TPLo5VGSwCUDjqj_j4g--p4FbBgYHbw/view?usp=sharing 
 * "GitHub and Python Introduction":https://github.com/trottar/UVA_summer_students 
 ** Navigate to "python_tutorials":https://github.com/trottar/UVA_summer_students/tree/master/python_tutorials and read through the two html files ("Introduction":https://github.com/trottar/UVA_summer_students/blob/master/python_tutorials/Introduction.ipynb and "python_tutorial_2":https://github.com/trottar/UVA_summer_students/blob/master/python_tutorials/python_tutorial_2.ipynb) 
 *** Note, these are html files so you'll need  

 h4. Near-term Goals 

 # Setup Linux Subsystem for Windows 
 # Fork the ML Beam Testing GitHub repository 
 # Containerize ML Beam Testing GitHub repository with Docker 

 h4. Homework 

 * "Read chapters 0-3 and finish exercises":https://drive.google.com/file/d/1-TPLo5VGSwCUDjqj_j4g--p4FbBgYHbw/view?usp=sharing 

 --- 

 h3. May 29th, 2024 

 h4. Setting Up Jupyter Notebooks in Docker 

 # Create a directory to store, build, and run Docker container 
	 <pre><code class="bash"> 
 cd /path/to/directory 
 mkdir beamtest_dir 
 cd beamtest_dir 
 </code></pre> 
 # Once in the new directory, create a Dockerfile 
	 <pre><code class="bash"> 
 touch Dockerfile 
 </code></pre> 
 # Using the text editor (e.g., vim, gedit, or emacs) of your choice, edit the Dockerfile with the following information 
	 <pre><code class="bash"> 
 # Use the official Python 3.9 image as the base image 
 FROM python:3.9 

 # Install Jupyter Notebook and other dependencies 
 RUN pip install --no-cache-dir jupyter 

 # Create a working directory 
 WORKDIR /workspace 

 # Expose the Jupyter Notebook port 
 EXPOSE 8888 

 # Set the default command to start Jupyter Notebook 
 CMD ["jupyter", "notebook", "--ip=0.0.0.0", "--port=8888", "--no-browser", "--allow-root"] 
 </code></pre> 
 # Build the Docker image (e.g., helloworld) 
	 <pre><code class="bash"> 
 docker build -t helloworld . 
 </code></pre> 
 # Run the Docker container 
 </code></pre> 
	 <pre><code class="bash"> 
 docker run -p 8888:8888 helloworld 
 </code></pre> 
 # Jupyter Notebook is now running. Navigate to a browser and type in either 

 * The custom token authorization screen</code></pre> 
	 <pre><code class="bash"> 
 http://localhost:8888 
 </code></pre> 

 * To bypass the token screen, copy/paste the URL that splashes in the terminal into your browser 

 h4. Near-term Goals 

 # Try and get the "python tutorial":https://github.com/trottar/UVA_summer_students Jupyter notebooks working in a container. 

 h4. Homework 

 * "Read chapters 0-3 and finish exercises":https://drive.google.com/file/d/1-TPLo5VGSwCUDjqj_j4g--p4FbBgYHbw/view?usp=sharing 

 --- 

 h3. May 30th, 2024 

 h4. Setting Up Bash Script for Running Docker 

 # Create a bash script 
	 <pre><code class="bash"> 
 touch run_docker.sh 
 </code></pre> 
 # Using the text editor (e.g., vim, gedit, or emacs) of your choice, edit run_docker.sh 
	 <pre><code class="bash"> 
 #!/bin/bash 

 # Build docker image ($1 is the first bash script argument) 
 docker build -t $1 . 

 # Run the docker container (renaming it with the '_container' string) 
 docker run -p 8888:8888 --name "${1}_container" $1 
 </code></pre> 
 # Adjust permissions with "chmod":https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/how-permissions-chmod-with-numbers-command-explained-777-rwx-unix to allow script execution 
	 <pre><code class="bash"> 
 chmod 755 run_docker.sh 
 </code></pre> 
 # Execute run_docker.sh with container name (e.g., helloworld) 
	 <pre><code class="bash"> 
 ./run_docker.sh helloworld 
 </code></pre> 

 The docker image should be properly built and the container should be running. Follow instructions from "yesterday":https://redmine.jlab.org/projects/uva-phys-zheng/wiki/ML_beam_test_PID_Meetings#May-29th-2024 to continue. 

 h4. Setting Up Bash Script for committing Docker container 

 This should be done while a docker container is running and performed in another terminal. 

 # Create a bash script 
	 <pre><code class="bash"> 
 touch commit_docker.sh 
 </code></pre> 
 # Using the text editor (e.g., vim, gedit, or emacs) of your choice, edit commit_docker.sh 
	 <pre><code class="bash"> 
 #!/bin/bash 

 # Create a formatted string with date to organize committed containers 
 # - `date` is a command that prints or sets the system date and time. 
 # - `+%H` extracts the hour in 24-hour format. 
 # - `+%M` extracts the minute. 
 # - `+%S` extracts the second. 
 # - `+%Y` extracts the year. 
 # - `+%m` extracts the month. 
 # - `%d` extracts the day. 
 f_date=$(date +%Y-%m-%d_h%Hm%Ms%S) 

 # While a docker container is running (with root name given as first argument),  
 # commit to a dated container so that changes in the container are saved 
 docker commit "${1}_container" "${1}_${f_date}" 
 </code></pre> 
 # Adjust permissions with "chmod":https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/how-permissions-chmod-with-numbers-command-explained-777-rwx-unix to allow script execution 
	 <pre><code class="bash"> 
 chmod 755 commit_docker.sh 
 </code></pre> 
 # Execute run_docker.sh with container name (e.g., helloworld) 
	 <pre><code class="bash"> 
 ./commit_docker.sh helloworld 
 </code></pre> 

 h4. Useful Docker Commands 

 * To see all docker images 
	 <pre><code class="bash"> 
 docker images 
 </code></pre> 
 * To see all docker containers running 
	 <pre><code class="bash"> 
 docker ps 
 </code></pre> 
 * To end specific docker container 
	 <pre><code class="bash"> 
 docker stop <container_id> 
 </code></pre> 
 * To end all docker container 
	 <pre><code class="bash"> 
 docker stop $(docker ps -q) 
 </code></pre> 

 h4. Near-term Goals 

 # Try and get the "python tutorial":https://github.com/trottar/UVA_summer_students Jupyter notebooks working in a container. 
 # Take a look at the "GitHub ML Beam Test Repository":https://github.com/JeffersonLab/solid_beamtest_hallc_2022/tree/main/aiml 
 * In particular, look at the script "solid_beamtest_hallc_2022/aiml/Pencil_Beam/Pencil_Cher_ML.ipynb":https://github.com/JeffersonLab/solid_beamtest_hallc_2022/blob/main/aiml/Pencil_Beam/Pencil_Cher_ML.ipynb 
 ** Try to get this notebook working in a container by creating a requirements.txt file (use this "site as a general guide":https://www.docker.com/blog/containerized-python-development-part-1/) 
 ** We will cover this in detail tomorrow 

 h4. Homework 

 * "Read chapters 0-3 and finish exercises":https://drive.google.com/file/d/1-TPLo5VGSwCUDjqj_j4g--p4FbBgYHbw/view?usp=sharing 

 --- 

 h3. May 31st, 2024 

 h4. Clone a git repository into the Docker container by adding a line to the Dockerfile 

 * Using the text editor (e.g., vim, gedit, or emacs) of your choice, edit the Dockerfile with the following information (the python tutorial GitHub repo is used as an example) 
	 <pre><code class="bash"> 
 # Use the official Python 3.9 image as the base image 
 FROM python:3.9 

 # Install Jupyter Notebook and other dependencies 
 RUN pip install --no-cache-dir jupyter 

 # Create a working directory 
 WORKDIR /workspace 

 # Clone GitHub repo 
 RUN git clone https://github.com/trottar/UVA_summer_students.git 

 # Expose the Jupyter Notebook port 
 EXPOSE 8888 

 # Set the default command to start Jupyter Notebook 
 CMD ["jupyter", "notebook", "--ip=0.0.0.0", "--port=8888", "--no-browser", "--allow-root"] 
 </code></pre> 

 

 h4. Quick requirements.txt introduction 

 * requirements.txt is a way to easily install many python packages by recursively reading through a text file 
 * This text file can either be generated... 
 ** Manually, by writing the required python packages into the text file. 
 *** Note: it is good practice to specify the version of the package. Such as... 
	 <pre><code class="bash"> 
 matplotlib==3.3.4 
 </code></pre> 
 ** Automatically, by running the following command 
	 <pre><code class="bash"> 
 pip freeze > requirements.txt 
 </code></pre> 
 ** Note: This command will include all packages installed. 

 * A Docker container can install all these packages upon building its image by adding a few lines to the Dockerfile 
 * Using the text editor (e.g., vim, gedit, or emacs) of your choice, edit the Dockerfile with the following information 
	 <pre><code class="bash"> 
 # Use the official Python 3.9 image as the base image 
 FROM python:3.9 

 # Install Jupyter Notebook and other dependencies 
 RUN pip install --no-cache-dir jupyter 

 # Create a working directory 
 WORKDIR /workspace 

 # Clone GitHub repo 
 RUN git clone https://github.com/trottar/UVA_summer_students.git 

 # copy the dependencies file to the working directory 
 COPY requirements.txt . 

 # install dependencies 
 RUN pip install -r requirements.txt 

 # Expose the Jupyter Notebook port 
 EXPOSE 8888 

 # Set the default command to start Jupyter Notebook 
 CMD ["jupyter", "notebook", "--ip=0.0.0.0", "--port=8888", "--no-browser", "--allow-root"] 
 </code></pre> 

 

 h4. Useful Docker Commands 

 * Remove all stopped containers (use with caution) 
	 <pre><code class="bash"> 
 docker system prune -f 
 </code></pre> 

 h4. Near-term Goals 

 # Take a look at the "GitHub ML Beam Test Repository":https://github.com/JeffersonLab/solid_beamtest_hallc_2022/tree/main/aiml 
 * In particular, look at the script "solid_beamtest_hallc_2022/aiml/Pencil_Beam/Pencil_Cher_ML.ipynb":https://github.com/JeffersonLab/solid_beamtest_hallc_2022/blob/main/aiml/Pencil_Beam/Pencil_Cher_ML.ipynb 
 ** Try to get this notebook working in a container by creating a requirements.txt file (use this "site as a general guide":https://www.docker.com/blog/containerized-python-development-part-1/) 

 h4. Homework 

 * "Read chapters 0-3 and finish exercises":https://drive.google.com/file/d/1-TPLo5VGSwCUDjqj_j4g--p4FbBgYHbw/view?usp=sharing