Project

General

Profile

Actions

Replay Output Variables » History » Revision 18

« Previous | Revision 18/46 (diff) | Next »
Sean Jeffas, 05/10/2023 05:25 PM


Replay Output Variables

Description

  • One can search any working build of SBS-offline or Podd for “rVarDef” to find the location of these definitions.
  • From the build src directory: grep -nr “rvardef*” .
  • All definitions below are recorded in the following order: { <variable extension>, <Definition>, <SBS-offline designation> }

Tracking Definition

  • These definitions are defined in Podd. See github [https://github.com/JeffersonLab/analyzer].
    • THaSpectrometer.cxx
  • All definitions below are accesed from the tree with the prepend bb.tr.
    • Ex. bb.tr.vz

Track Variables

 { "tr.n",    "Number of tracks",             "GetNTracks()" },
 { "tr.x",    "Track x coordinate (m)",       "fTracks.THaTrack.fX" },
 { "tr.y",    "Track x coordinate (m)",       "fTracks.THaTrack.fY" },
 { "tr.th",   "Tangent of track theta angle", "fTracks.THaTrack.fTheta" },
 { "tr.ph",   "Tangent of track phi angle",   "fTracks.THaTrack.fPhi" },
 { "tr.p",    "Track momentum (GeV)",         "fTracks.THaTrack.fP" },
 { "tr.flag", "Track status flag",            "fTracks.THaTrack.fFlag" },
 { "tr.chi2", "Track's chi2 from hits",       "fTracks.THaTrack.fChi2" },
 { "tr.ndof", "Track's NDoF",                 "fTracks.THaTrack.fNDoF" },
 { "tr.d_x",  "Detector x coordinate (m)",    "fTracks.THaTrack.fDX" },
 { "tr.d_y",  "Detector y coordinate (m)",    "fTracks.THaTrack.fDY" },
 { "tr.d_th", "Detector tangent of theta",    "fTracks.THaTrack.fDTheta" },
 { "tr.d_ph", "Detector tangent of phi",      "fTracks.THaTrack.fDPhi" },
 { "tr.r_x",  "Rotated x coordinate (m)",     "fTracks.THaTrack.fRX" },
 { "tr.r_y",  "Rotated y coordinate (m)",     "fTracks.THaTrack.fRY" },
 { "tr.r_th", "Rotated tangent of theta",     "fTracks.THaTrack.fRTheta" },
 { "tr.r_ph", "Rotated tangent of phi",       "fTracks.THaTrack.fRPhi" },
 { "tr.tg_y", "Target y coordinate",          "fTracks.THaTrack.fTY"},
 { "tr.tg_th", "Tangent of target theta angle", "fTracks.THaTrack.fTTheta"},
 { "tr.tg_ph", "Tangent of target phi angle",   "fTracks.THaTrack.fTPhi"},    
 { "tr.tg_dp", "Target delta",                "fTracks.THaTrack.fDp"},
 { "tr.px",    "Lab momentum x (GeV)",        "fTracks.THaTrack.GetLabPx()"},
 { "tr.py",    "Lab momentum y (GeV)",        "fTracks.THaTrack.GetLabPy()"},
 { "tr.pz",    "Lab momentum z (GeV)",        "fTracks.THaTrack.GetLabPz()"},
 { "tr.vx",    "Vertex x (m)",                "fTracks.THaTrack.GetVertexX()"},
 { "tr.vy",    "Vertex y (m)",                "fTracks.THaTrack.GetVertexY()"},
 { "tr.vz",    "Vertex z (m)",                "fTracks.THaTrack.GetVertexZ()"},
 { "tr.pathl", "Pathlength from tg to fp (m)","fTracks.THaTrack.GetPathLen()"},
 { "tr.time",  "Time of track@Ref Plane (s)", "fTracks.THaTrack.GetTime()"},
 { "tr.dtime", "uncer of time (s)",           "fTracks.THaTrack.GetdTime()"},
 { "tr.beta",  "Beta of track",               "fTracks.THaTrack.GetBeta()"},
 { "tr.dbeta", "uncertainty of beta",         "fTracks.THaTrack.GetdBeta()"},
 { "status",   "Bits of completed analysis stages", "fStagesDone" }

HCal Variable Definitions

  • These definitions from the following source files defined in SBS-offline. See github for more information.
    • SBSCalorimeter.cxx
    • SBSGenericDetector.cxx
  • All definitions below are accessed from the tree with the prepend sbs.hcal.
    • Ex. sbs.hcal.clus_blk.atime

ADC Variables

 { "adcrow", "Row for block in data vectors",  "fGood.ADCrow" }),
 { "adccol", "Col for block in data vectors",  "fGood.ADCcol" }),
 { "adcelemID", "Element ID for block in data vectors",  "fGood.ADCelemID" }),
 { "adclayer", "Layer for block in data vectors",  "fGood.ADClayer" }),
 { "ped", "Pedestal for block in data vectors",  "fGood.ped" }),
 { "a","ADC integral", "fGood.a"} );
 { "a_mult","ADC # hits in channel", "fGood.a_mult"} );
 { "a_p","ADC integral - ped", "fGood.a_p"} );
 { "a_c","(ADC integral - ped)*gain", "fGood.a_c"} );
 { "a_amp","ADC pulse amplitude", "fGood.a_amp"} );
 { "a_amp_p","ADC pulse amplitude -ped", "fGood.a_amp_p"} );
 { "a_amp_c","(ADC pulse amplitude -ped)*gain*AmpToIntRatio", "fGood.a_amp_p"} );
 { "a_amptrig_p","(ADC pulse amplitude -ped)*AmpToIntRatio", "fGood.a_amp_p"} );
 { "a_amptrig_c","(ADC pulse amplitude -ped)*gain*AmpToIntRatio", "fGood.a_amp_p"} );
 { "a_time","ADC pulse time", "fGood.a_time"} );
 { "hits.a",   "All ADC inntegrals",  "fRaw.a" });
 { "hits.a_amp",   "All ADC amplitudes",  "fRaw.a_amp" });
 { "hits.a_time",   "All ADC pulse times",  "fRaw.a_time" });

ADC Waveform Variables

 { "samps_idx", "Index in samples vector for given row-col module", "fGood.sidx" });
 { "nsamps" , "Number of samples for given row-col", "fGood.nsamps"});
 { "samps", "Calibrated ADC samples",  "fGood.samps" });
 { "samps_elemID", "Calibrated ADC samples",  "fGood.samps_elemID" });

Updated by Sean Jeffas about 1 year ago · 18 revisions