Actions
Replay Output Variables » History » Revision 28
« Previous |
Revision 28/52
(diff)
| Next »
Sean Jeffas, 05/11/2023 09:53 AM
Replay Output Variables¶
Description¶
- One can search any working build of SBS-offline or Podd for “rVarDef” to find the location of these definitions.
- From the build src directory: grep -nr “rvardef*” .
- All definitions below are recorded in the following order: { <variable extension>, <Definition>, <SBS-offline designation> }
Tracking Definition¶
- These definitions are defined in Podd. See github [https://github.com/JeffersonLab/analyzer].
- THaSpectrometer.cxx
- All definitions below are accesed from the tree with the prepend bb.tr.
- Ex. bb.tr.vz
Track Variables¶
{ "tr.n", "Number of tracks", "GetNTracks()" }, { "tr.x", "Track x coordinate (m)", "fTracks.THaTrack.fX" }, { "tr.y", "Track x coordinate (m)", "fTracks.THaTrack.fY" }, { "tr.th", "Tangent of track theta angle", "fTracks.THaTrack.fTheta" }, { "tr.ph", "Tangent of track phi angle", "fTracks.THaTrack.fPhi" }, { "tr.p", "Track momentum (GeV)", "fTracks.THaTrack.fP" }, { "tr.flag", "Track status flag", "fTracks.THaTrack.fFlag" }, { "tr.chi2", "Track's chi2 from hits", "fTracks.THaTrack.fChi2" }, { "tr.ndof", "Track's NDoF", "fTracks.THaTrack.fNDoF" }, { "tr.d_x", "Detector x coordinate (m)", "fTracks.THaTrack.fDX" }, { "tr.d_y", "Detector y coordinate (m)", "fTracks.THaTrack.fDY" }, { "tr.d_th", "Detector tangent of theta", "fTracks.THaTrack.fDTheta" }, { "tr.d_ph", "Detector tangent of phi", "fTracks.THaTrack.fDPhi" }, { "tr.r_x", "Rotated x coordinate (m)", "fTracks.THaTrack.fRX" }, { "tr.r_y", "Rotated y coordinate (m)", "fTracks.THaTrack.fRY" }, { "tr.r_th", "Rotated tangent of theta", "fTracks.THaTrack.fRTheta" }, { "tr.r_ph", "Rotated tangent of phi", "fTracks.THaTrack.fRPhi" }, { "tr.tg_y", "Target y coordinate", "fTracks.THaTrack.fTY"}, { "tr.tg_th", "Tangent of target theta angle", "fTracks.THaTrack.fTTheta"}, { "tr.tg_ph", "Tangent of target phi angle", "fTracks.THaTrack.fTPhi"}, { "tr.tg_dp", "Target delta", "fTracks.THaTrack.fDp"}, { "tr.px", "Lab momentum x (GeV)", "fTracks.THaTrack.GetLabPx()"}, { "tr.py", "Lab momentum y (GeV)", "fTracks.THaTrack.GetLabPy()"}, { "tr.pz", "Lab momentum z (GeV)", "fTracks.THaTrack.GetLabPz()"}, { "tr.vx", "Vertex x (m)", "fTracks.THaTrack.GetVertexX()"}, { "tr.vy", "Vertex y (m)", "fTracks.THaTrack.GetVertexY()"}, { "tr.vz", "Vertex z (m)", "fTracks.THaTrack.GetVertexZ()"}, { "tr.pathl", "Pathlength from tg to fp (m)","fTracks.THaTrack.GetPathLen()"}, { "tr.time", "Time of track@Ref Plane (s)", "fTracks.THaTrack.GetTime()"}, { "tr.dtime", "uncer of time (s)", "fTracks.THaTrack.GetdTime()"}, { "tr.beta", "Beta of track", "fTracks.THaTrack.GetBeta()"}, { "tr.dbeta", "uncertainty of beta", "fTracks.THaTrack.GetdBeta()"}, { "status", "Bits of completed analysis stages", "fStagesDone" }
Calorimeters, HCal and BBCal¶
- HCal and BBCal share the same class so their variable definitions are the same, but with a different prefix.
- HCal variables have the prefix sbs.hcal.
- BBCal variables have the prefix bb.
- These definitions from the following source files defined in SBS-offline. See github for more information.
- SBSCalorimeter.cxx
- SBSGenericDetector.cxx
HCal Variable Definitions¶
- All definitions below are accessed from the tree with the prepend sbs.hcal.
- Ex. sbs.hcal.clus_blk.atime
BBCal (Shower + PreShower) Variable Definitions¶
- All definitions below are accessed from the tree with the prepend bb.sh. for Shower and bb.ps. for PreShower
- Ex. bb.sh.e
ADC Variables¶
{ "adcrow", "Row for block in data vectors", "fGood.ADCrow" }), { "adccol", "Col for block in data vectors", "fGood.ADCcol" }), { "adcelemID", "Element ID for block in data vectors", "fGood.ADCelemID" }), { "adclayer", "Layer for block in data vectors", "fGood.ADClayer" }), { "ped", "Pedestal for block in data vectors", "fGood.ped" }), { "a","ADC integral", "fGood.a"} ); { "a_mult","ADC # hits in channel", "fGood.a_mult"} ); { "a_p","ADC integral - ped", "fGood.a_p"} ); { "a_c","(ADC integral - ped)*gain", "fGood.a_c"} ); { "a_amp","ADC pulse amplitude", "fGood.a_amp"} ); { "a_amp_p","ADC pulse amplitude -ped", "fGood.a_amp_p"} ); { "a_amp_c","(ADC pulse amplitude -ped)*gain*AmpToIntRatio", "fGood.a_amp_p"} ); { "a_amptrig_p","(ADC pulse amplitude -ped)*AmpToIntRatio", "fGood.a_amp_p"} ); { "a_amptrig_c","(ADC pulse amplitude -ped)*gain*AmpToIntRatio", "fGood.a_amp_p"} ); { "a_time","ADC pulse time", "fGood.a_time"} ); { "hits.a", "All ADC inntegrals", "fRaw.a" }); { "hits.a_amp", "All ADC amplitudes", "fRaw.a_amp" }); { "hits.a_time", "All ADC pulse times", "fRaw.a_time" });
ADC Waveform Variables¶
{ "samps_idx", "Index in samples vector for given row-col module", "fGood.sidx" }); { "nsamps" , "Number of samples for given row-col", "fGood.nsamps"}); { "samps", "Calibrated ADC samples", "fGood.samps" }); { "samps_elemID", "Calibrated ADC samples", "fGood.samps_elemID" });
TDC Variables¶
{ "tdcrow", "Row for block in data vectors", "fGood.TDCrow" }), { "tdccol", "Col for block in data vectors", "fGood.TDCcol" }), { "tdcelemID", "Element ID for block in data vectors", "fGood.TDCelemID" }), { "tdclayer", "Layer for block in data vectors", "fGood.TDClayer" }), { "tdc", "Calibrated TDC value", "fGood.t" }); { "tdc_mult", "TDC # of hits per channel", "fGood.t_mult" }); { "tdc_te", "Calibrated TDC trailing info", "fGood.t_te" }); { "tdc_tot", "Time Over Threshold", "fGood.t_ToT" }); { "hits.TDCelemID", "All TDC Element ID", "fRaw.TDCelemID" }); { "hits.t", "All TDC leading edge times", "fRaw.t" }); { "hits.t_te", "All TDC trailing edge times", "fRaw.t_te" }); { "hits.t_tot", "All TDC Time-over-threshold", "fRaw.t_ToT" });
Cluster Variables¶
{ "nclus", "Number of clusters meeting threshold", "fNclus" }, { "e", "Energy (MeV) of largest cluster", "GetE()" }, { "e_c", "Corrected Energy (MeV) of largest cluster", "GetECorrected()" }, { "atimeblk", "ADC time of highest energy block in the largest cluster", "GetAtime()" }, { "tdctimeblk", "TDC time of highest energy block in the largest cluster", "GetTDCtime()" }, { "eblk", "Energy (MeV) of highest energy block in the largest cluster", "GetEBlk()" }, { "eblk_c", "Corrected Energy (MeV) of highest energy block in the largest cluster", "GetEBlkCorrected()" }, { "rowblk", "Row of block with highest energy in the largest cluster", "GetRow()" }, { "colblk", "Col of block with highest energy in the largest cluster", "GetCol()" }, { "x", "x-position (mm) of largest cluster", "GetX()" }, { "y", "y-position (mm) of largest cluster", "GetY()" }, { "nblk", "Number of blocks in the largest cluster", "GetNblk()" }, { "idblk", "Logic number of block with highest energy in cluster", "GetBlkID()" },
Cluster Member Variables¶
{ "clus.e", "Energy of cluster", "fOutclus.e"}, { "clus.atime", "ADC time of cluster", "fOutclus.atime"}, { "clus.tdctime", "TDC time of cluster", "fOutclus.tdctime"}, { "clus.e_c","Energy calibrated of cluster", "fOutclus.e_c"}, { "clus.x", "x-position of cluster", "fOutclus.x"}, { "clus.y", "y-position of cluster", "fOutclus.y"}, { "clus.row","block row in cluster with highest energy", "fOutclus.row" }, { "clus.col","block col in cluster with highest energy", "fOutclus.col" }, { "clus.id","block number in cluster", "fOutclus.id" }, { "clus.nblk","number of blocks in cluster", "fOutclus.n" }, { "clus.eblk", "Energy of block with highest energy in cluster", "fOutclus.blk_e"}, { "clus.eblk_c","Energy calibrated of block with highest energy in cluster", "fOutclus.blk_e_c"},
"Good" Block Variables¶
{ "goodblock.e", "Energy of good blocks", "fGoodBlocks.e"}, { "goodblock.atime", "Energy of good blocks", "fGoodBlocks.ADCTime"}, { "goodblock.tdctime", "Energy of good blocks", "fGoodBlocks.TDCTime"}, { "goodblock.row", "Row of good blocks", "fGoodBlocks.row"}, { "goodblock.col", "Col of good blocks", "fGoodBlocks.col"}, { "goodblock.x", "x pos (m) of good blocks", "fGoodBlocks.x"}, { "goodblock.y", "y pos (m) of good blocks", "fGoodBlocks.y"}, { "goodblock.id", "Element ID of good blocks", "fGoodBlocks.id"},
ADC Variables¶
Updated by Sean Jeffas over 1 year ago · 28 revisions