Project

General

Profile

Replay Output Variables » History » Revision 41

Revision 40 (Sean Jeffas, 05/11/2023 10:10 AM) → Revision 41/52 (Sean Jeffas, 05/11/2023 10:11 AM)

h1. Replay Output Variables 

 {{toc}} 

 h1. Description 

 * One can search any working build of SBS-offline or Podd for “rVarDef” to find the location of these definitions. 
 * From the build src directory: grep -nr “rvardef*” . 
 * All definitions below are recorded in the following order: { <variable extension>, <Definition>, <SBS-offline designation> } 

 h1. Tracking Definition 

 * These definitions are defined in Podd. See github [https://github.com/JeffersonLab/analyzer]. 
 ** THaSpectrometer.cxx 
 * All definitions below are accesed from the tree with the prepend *bb.tr*. 
 ** Ex. *bb.tr.vz* 

 h3. Track Variables 

 <pre> 
  { "tr.n",      "Number of tracks",               "GetNTracks()" }, 
  { "tr.x",      "Track x coordinate (m)",         "fTracks.THaTrack.fX" }, 
  { "tr.y",      "Track x coordinate (m)",         "fTracks.THaTrack.fY" }, 
  { "tr.th",     "Tangent of track theta angle", "fTracks.THaTrack.fTheta" }, 
  { "tr.ph",     "Tangent of track phi angle",     "fTracks.THaTrack.fPhi" }, 
  { "tr.p",      "Track momentum (GeV)",           "fTracks.THaTrack.fP" }, 
  { "tr.flag", "Track status flag",              "fTracks.THaTrack.fFlag" }, 
  { "tr.chi2", "Track's chi2 from hits",         "fTracks.THaTrack.fChi2" }, 
  { "tr.ndof", "Track's NDoF",                   "fTracks.THaTrack.fNDoF" }, 
  { "tr.d_x",    "Detector x coordinate (m)",      "fTracks.THaTrack.fDX" }, 
  { "tr.d_y",    "Detector y coordinate (m)",      "fTracks.THaTrack.fDY" }, 
  { "tr.d_th", "Detector tangent of theta",      "fTracks.THaTrack.fDTheta" }, 
  { "tr.d_ph", "Detector tangent of phi",        "fTracks.THaTrack.fDPhi" }, 
  { "tr.r_x",    "Rotated x coordinate (m)",       "fTracks.THaTrack.fRX" }, 
  { "tr.r_y",    "Rotated y coordinate (m)",       "fTracks.THaTrack.fRY" }, 
  { "tr.r_th", "Rotated tangent of theta",       "fTracks.THaTrack.fRTheta" }, 
  { "tr.r_ph", "Rotated tangent of phi",         "fTracks.THaTrack.fRPhi" }, 
  { "tr.tg_y", "Target y coordinate",            "fTracks.THaTrack.fTY"}, 
  { "tr.tg_th", "Tangent of target theta angle", "fTracks.THaTrack.fTTheta"}, 
  { "tr.tg_ph", "Tangent of target phi angle",     "fTracks.THaTrack.fTPhi"},     
  { "tr.tg_dp", "Target delta",                  "fTracks.THaTrack.fDp"}, 
  { "tr.px",      "Lab momentum x (GeV)",          "fTracks.THaTrack.GetLabPx()"}, 
  { "tr.py",      "Lab momentum y (GeV)",          "fTracks.THaTrack.GetLabPy()"}, 
  { "tr.pz",      "Lab momentum z (GeV)",          "fTracks.THaTrack.GetLabPz()"}, 
  { "tr.vx",      "Vertex x (m)",                  "fTracks.THaTrack.GetVertexX()"}, 
  { "tr.vy",      "Vertex y (m)",                  "fTracks.THaTrack.GetVertexY()"}, 
  { "tr.vz",      "Vertex z (m)",                  "fTracks.THaTrack.GetVertexZ()"}, 
  { "tr.pathl", "Pathlength from tg to fp (m)","fTracks.THaTrack.GetPathLen()"}, 
  { "tr.time",    "Time of track@Ref Plane (s)", "fTracks.THaTrack.GetTime()"}, 
  { "tr.dtime", "uncer of time (s)",             "fTracks.THaTrack.GetdTime()"}, 
  { "tr.beta",    "Beta of track",                 "fTracks.THaTrack.GetBeta()"}, 
  { "tr.dbeta", "uncertainty of beta",           "fTracks.THaTrack.GetdBeta()"}, 
  { "status",     "Bits of completed analysis stages", "fStagesDone" } 
 </code></pre> 

 h1. Calorimeters, HCal and BBCal 

 * HCal and BBCal share the same class so their variable definitions are the same, but with a different prefix. 
 ** HCal variables have the prefix *sbs.hcal.* 
 ** BBCal variables have the prefix *bb.* 
 * These definitions from the following source files defined in SBS-offline. See github for more information. 
 ** SBSCalorimeter.cxx 
 ** SBSGenericDetector.cxx 

 h3. HCal Variable Definitions 

 * All definitions below are accessed from the tree with the prepend *sbs.hcal*. 
 ** Ex. *sbs.hcal.clus_blk.atime* 

 h3. BBCal (Shower + PreShower) Variable Definitions 

 * All definitions below are accessed from the tree with the prepend *bb.sh.* for Shower and *bb.ps.* for PreShower 
 ** Ex. *bb.sh.e* 

 h3. ADC Variables 


 <pre> 
  { "adcrow", "Row for block in data vectors",    "fGood.ADCrow" }), 
  { "adccol", "Col for block in data vectors",    "fGood.ADCcol" }), 
  { "adcelemID", "Element ID for block in data vectors",    "fGood.ADCelemID" }), 
  { "adclayer", "Layer for block in data vectors",    "fGood.ADClayer" }), 
  { "ped", "Pedestal for block in data vectors",    "fGood.ped" }), 
  { "a","ADC integral", "fGood.a"} ); 
  { "a_mult","ADC # hits in channel", "fGood.a_mult"} ); 
  { "a_p","ADC integral - ped", "fGood.a_p"} ); 
  { "a_c","(ADC integral - ped)*gain", "fGood.a_c"} ); 
  { "a_amp","ADC pulse amplitude", "fGood.a_amp"} ); 
  { "a_amp_p","ADC pulse amplitude -ped", "fGood.a_amp_p"} ); 
  { "a_amp_c","(ADC pulse amplitude -ped)*gain*AmpToIntRatio", "fGood.a_amp_p"} ); 
  { "a_amptrig_p","(ADC pulse amplitude -ped)*AmpToIntRatio", "fGood.a_amp_p"} ); 
  { "a_amptrig_c","(ADC pulse amplitude -ped)*gain*AmpToIntRatio", "fGood.a_amp_p"} ); 
  { "a_time","ADC pulse time", "fGood.a_time"} ); 
  { "hits.a",     "All ADC inntegrals",    "fRaw.a" }); 
  { "hits.a_amp",     "All ADC amplitudes",    "fRaw.a_amp" }); 
  { "hits.a_time",     "All ADC pulse times",    "fRaw.a_time" }); 
 </code></pre> 

 h3. ADC Waveform Variables 

 <pre> 
  { "samps_idx", "Index in samples vector for given row-col module", "fGood.sidx" }); 
  { "nsamps" , "Number of samples for given row-col", "fGood.nsamps"}); 
  { "samps", "Calibrated ADC samples",    "fGood.samps" }); 
  { "samps_elemID", "Calibrated ADC samples",    "fGood.samps_elemID" }); 
 </code></pre> 

 h3. TDC Variables 

 <pre> 
  { "tdcrow", "Row for block in data vectors",    "fGood.TDCrow" }), 
  { "tdccol", "Col for block in data vectors",    "fGood.TDCcol" }), 
  { "tdcelemID", "Element ID for block in data vectors",    "fGood.TDCelemID" }), 
  { "tdclayer", "Layer for block in data vectors",    "fGood.TDClayer" }), 
  { "tdc", "Calibrated TDC value", "fGood.t" }); 
  { "tdc_mult", "TDC # of hits per channel", "fGood.t_mult" }); 
  { "tdc_te", "Calibrated TDC trailing info", "fGood.t_te" }); 
  { "tdc_tot", "Time Over Threshold", "fGood.t_ToT" }); 
  { "hits.TDCelemID",     "All TDC Element ID",    "fRaw.TDCelemID" }); 
  { "hits.t",     "All TDC leading edge times",    "fRaw.t" }); 
  { "hits.t_te",     "All TDC trailing edge times",    "fRaw.t_te" }); 
  { "hits.t_tot",    "All TDC Time-over-threshold",    "fRaw.t_ToT" }); 
 </code></pre> 

 h3. Cluster Variables 

 <pre> 
  { "nclus", "Number of clusters meeting threshold", "fNclus" }, 
  { "e",        "Energy (MeV) of largest cluster",      "GetE()" }, 
  { "e_c",      "Corrected Energy (MeV) of largest cluster",      "GetECorrected()" }, 
  { "atimeblk", "ADC time of highest energy block in the largest cluster", "GetAtime()" }, 
  { "tdctimeblk", "TDC time of highest energy block in the largest cluster", "GetTDCtime()" }, 
  { "eblk",     "Energy (MeV) of highest energy block in the largest cluster",      "GetEBlk()" }, 
  { "eblk_c", "Corrected Energy (MeV) of highest energy block in the largest cluster",      "GetEBlkCorrected()" }, 
  { "rowblk", "Row of block with highest energy in the largest cluster",      "GetRow()" }, 
  { "colblk", "Col of block with highest energy in the largest cluster",      "GetCol()" }, 
  { "x",        "x-position (mm) of largest cluster", "GetX()" }, 
  { "y",        "y-position (mm) of largest cluster", "GetY()" }, 
  { "nblk",     "Number of blocks in the largest cluster",      "GetNblk()" }, 
  { "idblk",    "Logic number of block with highest energy in cluster",      "GetBlkID()" }, 
 </code></pre> 

 h3. Cluster Member Variables 

 <pre> 
  { "clus.e", "Energy of cluster", "fOutclus.e"}, 
  { "clus.atime", "ADC time of cluster", "fOutclus.atime"}, 
  { "clus.tdctime", "TDC time of cluster", "fOutclus.tdctime"}, 
  { "clus.e_c","Energy calibrated of cluster", "fOutclus.e_c"}, 
  { "clus.x", "x-position of cluster", "fOutclus.x"}, 
  { "clus.y", "y-position of cluster", "fOutclus.y"}, 
  { "clus.row","block row in cluster with highest energy",      "fOutclus.row" }, 
  { "clus.col","block col in cluster with highest energy",      "fOutclus.col" }, 
  { "clus.id","block number in cluster",      "fOutclus.id" }, 
  { "clus.nblk","number of blocks in cluster",      "fOutclus.n" }, 
  { "clus.eblk", "Energy of block with highest energy in cluster", "fOutclus.blk_e"}, 
  { "clus.eblk_c","Energy calibrated of block with highest energy in cluster", "fOutclus.blk_e_c"}, 
 </code></pre> 

 h3. "Good" Block Variables 

 <pre> 
  { "goodblock.e", "Energy of good blocks", "fGoodBlocks.e"}, 
  { "goodblock.atime", "Energy of good blocks", "fGoodBlocks.ADCTime"}, 
  { "goodblock.tdctime", "Energy of good blocks", "fGoodBlocks.TDCTime"}, 
  { "goodblock.row", "Row of good blocks", "fGoodBlocks.row"}, 
  { "goodblock.col", "Col of good blocks", "fGoodBlocks.col"}, 
  { "goodblock.x", "x pos (m) of good blocks", "fGoodBlocks.x"}, 
  { "goodblock.y", "y pos (m) of good blocks", "fGoodBlocks.y"}, 
  { "goodblock.id", "Element ID of good blocks", "fGoodBlocks.id"}, 
 </code></pre> 

 h1. GEM Definitions 

 * All definitions below are accessed from the tree with the prepend *bb.gem.* 
 ** ex. *bb.gem.track.ntrack* 
 * All definitions coming from the module class, SBSGEMModule.cxx, has an extra prefix for that module.  
 * GEM modules are labeled numerically as m1, m2, m3, etc. We will generically list this as *m#*. 
 ** Therefore the prefix will be *bb.gem.m#.* 
 ** ex. *bb.gem.m3.strip.nstripsfired* 


 h3. Track Variables 

 * These variables come from SBSGEMSpectrometerTracker.cxx 

 <pre> 
    { "track.ntrack", "number of tracks found", "fNtracks_found" }, 
    { "track.nhits", "number of hits on track", "fNhitsOnTrack" }, 
    { "track.x", "Track X (TRANSPORT)", "fXtrack" }, //might be redundant with spectrometer variables, but probably needed for "non-tracking" version 
    { "track.y", "Track Y (TRANSPORT)", "fYtrack" }, 
    { "track.xp", "Track dx/dz (TRANSPORT)", "fXptrack" }, 
    { "track.yp", "Track dy/dz (TRANSPORT)", "fYptrack" }, 
    { "track.chi2ndf", "Track Chi2/ndf", "fChi2Track" }, 
    { "track.besttrack", "Index of 'best' track", "fBestTrackIndex" }, 
 </code></pre> 

 h3. Cluster Variables 

 * These variables come from SBSGEMSpectrometerTracker.cxx 

 <pre> 
    { "hit.ngoodhits", "Total number of hits on all found tracks", "fNgoodhits" }, 
    { "hit.trackindex", "Index of track containing this hit", "fHitTrackIndex" }, 
    { "hit.module", "Module index of this hit", "fHitModule" }, 
    { "hit.layer", "Layer index of this hit", "fHitLayer" }, 
    { "hit.nstripu", "number of U strips on this hit", "fHitNstripsU" }, 
    { "hit.nstripv", "number of V strips on this hit", "fHitNstripsV" }, 
    { "hit.ustripmax", "index of u strip with max ADC in this hit", "fHitUstripMax" }, 
    { "hit.vstripmax", "index of v strip with max ADC in this hit", "fHitVstripMax" }, 
    { "hit.ustriplo", "index of minimum u strip in this hit", "fHitUstripLo" }, 
    { "hit.vstriplo", "index of minimum v strip in this hit", "fHitVstripLo" }, 
    { "hit.ustriphi", "index of maximum u strip in this hit", "fHitUstripHi" }, 
    { "hit.vstriphi", "index of maximum v strip in this hit", "fHitVstripHi" }, 
    { "hit.u", "reconstructed hit position along u", "fHitUlocal" }, 
    { "hit.v", "reconstructed hit position along v", "fHitVlocal" }, 
    { "hit.xlocal", "reconstructed local x position of hit (internal module coordinates)", "fHitXlocal" }, 
    { "hit.ylocal", "reconstructed local y position of hit (internal module coordinates)", "fHitYlocal" }, 
    { "hit.xglobal", "reconstructed global x position of hit", "fHitXglobal" }, 
    { "hit.yglobal", "reconstructed global y position of hit", "fHitYglobal" }, 
    { "hit.zglobal", "reconstructed global z position of hit", "fHitZglobal" }, 
    { "hit.umoment", "U cluster moment (consult source code or A. Puckett for definition)", "fHitUmoment" }, 
    { "hit.vmoment", "V cluster moment (consult source code or A. Puckett for definition)", "fHitVmoment" }, 
    { "hit.usigma", "U cluster rms", "fHitUsigma" }, 
    { "hit.vsigma", "V cluster rms", "fHitVsigma" }, 
    { "hit.residu", "u hit residual with fitted track (inclusive method)", "fHitResidU" }, 
    { "hit.residv", "v hit residual with fitted track (inclusive method)", "fHitResidV" }, 
    { "hit.eresidu", "u hit residual with fitted track (exclusive method)", "fHitEResidU" }, 
    { "hit.eresidv", "v hit residual with fitted track (exclusive method)", "fHitEResidV" }, 
    { "hit.ADCU", "cluster ADC sum, U strips", "fHitUADC" }, 
    { "hit.ADCV", "cluster ADC sum, V strips", "fHitVADC" }, 
    { "hit.ADCavg", "cluster ADC average", "fHitADCavg" }, 
    { "hit.ADCmaxstripU", "ADC sum of max U strip", "fHitUADCmaxstrip" }, 
    { "hit.ADCmaxstripV", "ADC sum of max V strip", "fHitVADCmaxstrip" }, 
    { "hit.ADCmaxsampU", "max sample of max U strip", "fHitUADCmaxsample" }, 
    { "hit.ADCmaxsampV", "max sample of max V strip", "fHitVADCmaxsample" }, 
    { "hit.ADCmaxsampUclust", "max U cluster-summed ADC time sample", "fHitUADCmaxclustsample" }, 
    { "hit.ADCmaxsampVclust", "max V cluster-summed ADC time sample", "fHitVADCmaxclustsample" }, 
    { "hit.ADCasym", "Hit ADC asymmetry: (ADCU - ADCV)/(ADCU + ADCV)", "fHitADCasym" }, 
    { "hit.Utime", "cluster timing based on U strips", "fHitUTime" }, 
    { "hit.Vtime", "cluster timing based on V strips", "fHitVTime" }, 
    { "hit.UtimeMaxStrip", "cluster timing based on U strips", "fHitUTimeMaxStrip" }, 
    { "hit.VtimeMaxStrip", "cluster timing based on V strips", "fHitVTimeMaxStrip" }, 
    { "hit.deltat", "cluster U time - V time", "fHitDeltaT" }, 
    { "hit.Tavg", "hit T average", "fHitTavg" }, 
    { "hit.isampmaxUclust", "peak time sample in cluster-summed U ADC samples", "fHitIsampMaxUclust" }, 
    { "hit.isampmaxVclust", "peak time sample in cluster-summed V ADC samples", "fHitIsampMaxVclust" }, 
    { "hit.isampmaxUstrip", "peak time sample in max U strip", "fHitIsampMaxUstrip" }, 
    { "hit.isampmaxVstrip", "peak time sample in max V strip", "fHitIsampMaxVstrip" }, 
    { "hit.ccor_clust", "correlation coefficient between cluster-summed U and V samples", "fHitCorrCoeffClust" }, 
    { "hit.ccor_strip", "correlation coefficient between U and V samples on strips with max ADC", "fHitCorrCoeffMaxStrip" }, 
    { "hit.ENABLE_CM_U", "Enable CM flag for max U strip in this hit", "fHitU_ENABLE_CM" }, 
    { "hit.ENABLE_CM_V", "Enable CM flag for max V strip in this hit", "fHitV_ENABLE_CM" }, 
    { "hit.CM_GOOD_U", "Enable CM flag for max U strip in this hit", "fHitU_CM_GOOD" }, 
    { "hit.CM_GOOD_V", "Enable CM flag for max V strip in this hit", "fHitV_CM_GOOD" }, 
    { "hit.BUILD_ALL_SAMPLES_U", "Enable CM flag for max U strip in this hit", "fHitU_BUILD_ALL_SAMPLES" }, 
    { "hit.BUILD_ALL_SAMPLES_V", "Enable CM flag for max V strip in this hit", "fHitV_BUILD_ALL_SAMPLES" }, 
    { "hit.ADCfrac0_Umax", "Max U strip ADC0/ADCsum", "fHitADCfrac0_MaxUstrip" }, 
    { "hit.ADCfrac1_Umax", "Max U strip ADC1/ADCsum", "fHitADCfrac1_MaxUstrip" }, 
    { "hit.ADCfrac2_Umax", "Max U strip ADC2/ADCsum", "fHitADCfrac2_MaxUstrip" }, 
    { "hit.ADCfrac3_Umax", "Max U strip ADC3/ADCsum", "fHitADCfrac3_MaxUstrip" }, 
    { "hit.ADCfrac4_Umax", "Max U strip ADC4/ADCsum", "fHitADCfrac4_MaxUstrip" }, 
    { "hit.ADCfrac5_Umax", "Max U strip ADC5/ADCsum", "fHitADCfrac5_MaxUstrip" }, 
    { "hit.ADCfrac0_Vmax", "Max V strip ADC0/ADCsum", "fHitADCfrac0_MaxVstrip" }, 
    { "hit.ADCfrac1_Vmax", "Max V strip ADC1/ADCsum", "fHitADCfrac1_MaxVstrip" }, 
    { "hit.ADCfrac2_Vmax", "Max V strip ADC2/ADCsum", "fHitADCfrac2_MaxVstrip" }, 
    { "hit.ADCfrac3_Vmax", "Max V strip ADC3/ADCsum", "fHitADCfrac3_MaxVstrip" }, 
    { "hit.ADCfrac4_Vmax", "Max V strip ADC4/ADCsum", "fHitADCfrac4_MaxVstrip" }, 
    { "hit.ADCfrac5_Vmax", "Max V strip ADC5/ADCsum", "fHitADCfrac5_MaxVstrip" }, 
    { "nlayershit", "number of layers with any strip fired", "fNlayers_hit" }, 
    { "nlayershitu", "number of layers with any U strip fired", "fNlayers_hitU" }, 
    { "nlayershitv", "number of layers with any V strip fired", "fNlayers_hitV" }, 
    { "nlayershituv", "number of layers with at least one 2D hit", "fNlayers_hitUV" }, 
    { "nstripsu_layer", "total number of U strips fired by layer", "fNstripsU_layer" }, 
    { "nstripsv_layer", "total number of V strips fired by layer", "fNstripsV_layer" }, 
    { "nclustu_layer", "total number of U clusters by layer", "fNclustU_layer" }, 
    { "nclustv_layer", "total number of V clusters by layer", "fNclustV_layer" }, 
    { "n2Dhit_layer", "total_number of 2D hits by layer", "fN2Dhit_layer" }, 
    { "clust.nclustu",     "Number of clusters in u",     "fNclustU" }, 
    { "clust.clustu_strips",     "u clusters strip multiplicity",     "fUclusters.nstrips" }, 
    { "clust.clustu_pos",     "u clusters position",     "fUclusters.hitpos_mean" }, 
    { "clust.clustu_adc",     "u clusters adc sum",     "fUclusters.clusterADCsum" }, 
    { "clust.clustu_time",     "u clusters time",     "fUclusters.t_mean" }, 
    { "clust.nclustv",     "Number of clusters in v",     "fNclustV" }, 
    { "clust.clustv_strips",     "v clusters strip multiplicity",     "fVclusters.nstrips" }, 
    { "clust.clustv_pos",     "v clusters position",     "fVclusters.hitpos_mean" }, 
    { "clust.clustv_adc",     "v clusters adc sum",     "fVclusters.clusterADCsum" }, 
    { "clust.clustv_time",     "v clusters time",     "fVclusters.t_mean" }, 
    { "hit.nhits2d",     "Number of 2d hits",     "fN2Dhits" }, 
    { "hit.hitx",     "local X coordinate of hit",     "fHits.xhit" }, 
    { "hit.hity",     "local Y coordinate of hit",     "fHits.yhit" }, 
    { "hit.hitxg",     "transport X coordinate of hit",     "fHits.xghit" }, 
    { "hit.hityg",     "transport Y coordinate of hit",     "fHits.yghit" }, 
    { "hit.hitADCasym",     "hit ADC asymmetry (ADCU-ADCV)/2",     "fHits.ADCasym" }, 
    { "hit.hitADCavg",    "(ADCU+ADCV)/2", "fHits.Ehit" }, 
    { "hit.hitTdiff",     "hit time difference (u-v)",     "fHits.tdiff" }, 
    { "hit.hitTavg",     "average time of 2D hit", "fHits.thitcorr" }, 
    { "hit.hit_iuclust", "index in u cluster array", "fHits.iuclust" }, 
    { "hit.hit_ivclust", "index in v cluster array", "fHits.ivclust" }, 
    { "hit.ontrack", "hit is on track", "fHits.ontrack" }, 
 </code></pre> 

 h3. Strip Variables 

 * These variables come from SBSGEMModule.cxx 
 * GEM modules are labeled numerically as m1, m2, m3, etc. We will generically list this as *m#*. 
 * For the module definitions below there is an extra prefix for each module, *bb.gem.m#.* 
 ** ex. *bb.gem.m3.strip.nstripsfired* 

 <pre> 
    { "strip.nstripsfired", "Number of strips fired", kUInt, 0, &fNstrips_hit }, 
    { "strip.nstrips_keep", "Number of fired strips passing basic timing cuts", kUInt, 0, &fNstrips_keep }, 
    { "strip.nstrips_keepU", "Number of U/X strips passing basic timing cuts", kUInt, 0, &fNstrips_keepU }, 
    { "strip.nstrips_keepV", "Number of V/Y strips passing basic timing cuts", kUInt, 0, &fNstrips_keepV }, 
    { "strip.nstrips_keep_lmax", "Number of strips passing local max thresholds and basic timing cuts", kUInt, 0, &fNstrips_keep_lmax }, 
    { "strip.nstrips_keep_lmaxU", "Number of U/X strips passing local max thresholds and basic timing cuts", kUInt, 0, &fNstrips_keep_lmaxU }, 
    { "strip.nstrips_keep_lmaxV", "Number of V/Y strips passing local max thresholds and basic timing cuts", kUInt, 0, &fNstrips_keep_lmaxV }, 
    { "strip.istrip", "strip index", kUInt, 0, &(fStrip[0]), &fNstrips_hit }, 
    { "strip.IsU", "U strip?", kUInt, 0, &(fStripIsU[0]), &fNstrips_hit }, 
    { "strip.IsV", "V strip?", kUInt, 0, &(fStripIsV[0]), &fNstrips_hit }, 
    { "strip.ADCsamples", "ADC samples (index = isamp+Nsamples*istrip)", kDouble, 0, &(fADCsamples1D[0]), &fNdecoded_ADCsamples }, 
    { "strip.rawADCsamples", "raw ADC samples (no baseline subtraction)", kInt, 0, &(fRawADCsamples1D[0]), &fNdecoded_ADCsamples }, 
    { "strip.ADCsum", "Sum of ADC samples on a strip", kDouble, 0, &(fADCsums[0]), &fNstrips_hit }, 
    { "strip.isampmax", "sample in which max ADC occurred on a strip", kUInt, 0, &(fMaxSamp[0]), &fNstrips_hit }, 
    { "strip.ADCmax", "Value of max ADC sample on a strip", kDouble, 0, &(fADCmax[0]), &fNstrips_hit }, 
    { "strip.Tmean", "ADC-weighted mean strip time", kDouble, 0, &(fTmean[0]), &fNstrips_hit }, 
    { "strip.Tsigma", "ADC-weighted rms strip time", kDouble, 0, &(fTsigma[0]), &fNstrips_hit }, 
    { "strip.Tcorr", "Corrected strip time", kDouble, 0, &(fTcorr[0]), &fNstrips_hit }, 
    { "strip.Tfit", "Fitted strip time", kDouble, 0, &(fStripTfit[0]), &fNstrips_hit }, 
    { "strip.Tdiff", "time diff. wrt max strip in cluster (or perhaps cluster tmean)", kDouble, 0, &(fStripTdiff[0]), &fNstrips_hit }, 
    { "strip.TSchi2", "chi2 of strip pulse shape (time samples) wrt average good strip pulse shape", kDouble, 0, &(fStripTSchi2[0]), &fNstrips_hit }, 
    { "strip.CorrCoeff", "Correlation coefficient of strip wrt max strip on cluster (or perhaps cluster tmean)", kDouble, 0, &(fStripCorrCoeff[0]), &fNstrips_hit }, 
    { "strip.itrack", "Index of track containing this strip (-1 if not on any track)", kInt, 0, &(fStripTrackIndex[0]), &fNstrips_hit }, 
    { "strip.ontrack", "Is this strip on any track (0/1)?", kUInt, 0, &(fStripOnTrack[0]), &fNstrips_hit }, 
    { "strip.ADCavg", "average of ADC samples on a strip", kDouble, 0, &(fStripADCavg[0]), &fNstrips_hit }, 
    { "strip.ENABLE_CM", "online common-mode enabled?", kUInt, 0, &(fStrip_ENABLE_CM[0]), &fNstrips_hit }, 
    { "strip.CM_GOOD", "common-mode out of range? (online failed)", kUInt, 0, &(fStrip_CM_GOOD[0]), &fNstrips_hit }, 
    { "strip.BUILD_ALL_SAMPLES", "online or offline zero suppression", kUInt, 0, &(fStrip_BUILD_ALL_SAMPLES[0]), &fNstrips_hit }, 
    { "strip.ontrackU", "U strip on track", kUInt, 0, &(fStripUonTrack[0]), &fNstrips_hit }, 
    { "strip.ontrackV", "V strip on track", kUInt, 0, &(fStripVonTrack[0]), &fNstrips_hit }, 
 </code></pre> 

 h3. Timing Variables 

 * These variables come from SBSGEMModule.cxx 

 <pre> 
    { "time.T0_by_APV", "Coarse MPD timestamp of first event", "fT0_by_APV" }, 
    { "time.Tref_coarse", "Reference coarse MPD time stamp for this event", "fTref_coarse" }, 
    { "time.Tcoarse_by_APV", "Coarse MPD timestamp by APV relative to Tref_coarse", "fTcoarse_by_APV" }, 
    { "time.Tfine_by_APV", "Fine MPD timestamp by APV", "fTfine_by_APV" }, 
    { "time.EventCount_by_APV", "MPD event counter by APV (these should all agree in any one event)", "fEventCount_by_APV" }, 
    { "time.T_ns_by_APV", "Time stamp in ns relative to coarse T_ref", "fTimeStamp_ns_by_APV" }, 
 </code></pre> 

 h1. Timing Hodoscope Variable Definitions 

 * These definitions from the following source files defined in SBS-offline. See github for more information. 
 ** SBSTimingHodoscope.cxx 
 ** SBSGenericDetector.cxx 
 * All definitions below are accessed from the tree with the prepend *bb.hodotdc.* 
 ** Ex. *bb.hodotdc.tdc_tot* 

 h3. Scint. Bar TDC Variables 
 <pre> 
    

    { "bar.ngoodbars",            "Number of good bars",                    "GetGoodBarsSize()"}, 
    { "bar.tdc.id",               "TDC Hit Bar ID",                         "fGoodBarIDsTDC"}, 
    { "bar.tdc.meantime",         "Bar Mean Time [ns]",                     "fGoodBarTDCmean"}, 
    { "bar.tdc.timediff",         "Bar Time Diff [ns]",                     "fGoodBarTDCdiff"}, 
    { "bar.tdc.timehitpos",       "Bar Time Hit pos from L [m]",            "fGoodBarTDCpos"}, 
    { "bar.tdc.vpos",             "Bar vertical position [m]",              "fGoodBarTDCvpos"}, 
    { "bar.tdc.L.le",             "Left pmt time LE [ns]",                  "fGoodBarTDCLle"}, 
    { "bar.tdc.L.leW",            "Left pmt time LE walk corr [ns]",        "fGoodBarTDCLleW"}, 
    { "bar.tdc.L.te",             "Left pmt time TE [ns]",                  "fGoodBarTDCLte"}, 
    { "bar.tdc.L.teW",            "Left pmt time TE walk corr [ns]",        "fGoodBarTDCLteW"}, 
    { "bar.tdc.L.tot",            "Left pmt tot [ns]",                      "fGoodBarTDCLtot"}, 
    { "bar.tdc.L.totW",           "Left pmt tot walk corr [ns]",            "fGoodBarTDCLtotW"}, 
    { "bar.tdc.R.le",             "Right pmt time LE [ns]",                 "fGoodBarTDCRle"}, 
    { "bar.tdc.R.leW",            "Right pmt time LE walk corr [ns]",       "fGoodBarTDCRleW"}, 
    { "bar.tdc.R.te",             "Right pmt time TE [ns]",                 "fGoodBarTDCRte"}, 
    { "bar.tdc.R.teW",            "Right pmt time TE walk corr [ns[",       "fGoodBarTDCRteW"}, 
    { "bar.tdc.R.tot",            "Right pmt tot [ns[",                     "fGoodBarTDCRtot"}, 
    { "bar.tdc.R.totW",           "Right pmt tot walk corr [ns]",           "fGoodBarTDCRtotW"}, 
 </code></pre>